A CHARACTERIZATION OF A PARALLEL ROW-COLUMN SCORTING TECHNIQUE
FOR RECTANGULAR ARRAYS

Isaac D. Scherson and Sandeep Sen,
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106.

Index Terms

parallel sorting, complexity, upper bound, lower bound, area-time tradeofis,
parallel architecture, orthogonal memory, fixed-connection network, very large
scale integration.

Abstract

m an m X n rectangular array, row-column sorting technigue is shown to
yield a snake-like ordered sequence. By characterizing the data movement
under successive row and column sorts, we prove that the procedure converges
in O(logom ) iterations. A direct application of this technique is an efficient
bubble-sort algorithm, suitable for VLSI implementation, with near optimal
area- time? performance. The inherent parallelism of row-column sort is dis-
cussed in light of a novel orthogonal access memaory architecture.



1. Introduction

The problem of sorting numbers arranged on a two dimensional array has
been studied by Nasssimi & Sahni[2], Thompson & Kung[1], Kumar & Hirsch-
berg[10] and more recently by Leighton[3] and Lang et al.[8]. Each data item
has to be routed to a distinct position of the array in a sorted sequence
predetermined by some indexing scheme. Three different indexing schemes
have been considered by Thompson & Kung[1] : row major, shuffled row-major
and snake like row major (see fig 1). More recently Leighton[3] has used a
column-major scheme which may be considered the same as a transposed row-
major form. These sorting algorithms in rectangular arrays were based on two-
dimensional adaptations of very powerful sorting schemes like bitonic sort([9])
in [1] and [2], and odd-even merge sprt([Q]). in [10] and they have been shown to
perform optimally. However these algorithms involve some complex operations
like data shuffles (in [1], [2]. [8], [10]) and transposition of a rectangular
matrix(in [3]). A seemingly obvious way of performing sorting in a real two-
dimensional sense would be to sort rows ‘and columns which unfortunately has
been found to be ineflective when implemented in a straight forward manner. In
a very recent paper Leighton[3] observes that '.. if the matrix were square, we
would essentially just be sorting rows and columns which is well known to leave
entries arbitrarily away from their correct sorted position." Obviously this was
in reference to sorting rows and columns in directions imposed by the row-major
indexing scheme. Paradoxically, with a row-major snake like indexing it is possi-
ble to obtain a sorted sequence by sorting rows and columns. We shall demon-
strate that such an iterative procedure converges in a finite number of steps. It
is easy to see that sorting rows in a row-major or a snake-like pattern has the

same complexity since they differ only in the direction of sorting.

In other words, by sorting adjacent rows in opposite directions (one in



=3

ascending order from left to right and the other in descending order) and sort-
ing the columns in ascending order from top to bottom, the elements tend to
move closer to their final sorted positions. In the end we shall have a sorted
sequence in snake-like row-major form, from which we can obtain a row-major
form by simply inverting the alternate rows, an operation, that does not affect

the asymptotic performance of the overall procedure.

This simple algorithm, which we call row-column sort will be formally intro-
duced in the next section. Section Il will provide the complexity analysis of the
algorithm which is not as simple as the algorithm. In section IV we discuss a
method for optimizing bubble-sort in VLSI using row-column sort. In section V we
introduce a multiprocessor architecture suitable for implementing this algo-

rithm and compare its performance with some relevant existing architectures.

[I. Row-column sort

Let Q = [ g;; ] be an mxn matrix onto which we have mapped a linear
integer sequence S. Sorting the sequence S is then equivalent to sorting the ele-
ments of Q in some predetermined indexing scheme. We suggest an iterative
algorithm in which every iteration consists of two basic operations :
(1) Column-sort - Sort independently, in an ascending order from top to bottom

all column vectors of Q. After this step g; ; < gy4,; forallj=1,..n.

(2) Row-sort - Sort independently all row vectors of Q such that adjacent rows
are sorted in opposite directions (alternate rows in the same direction). In a
normal snake-like row-major indexing scheme, sort the first row from left to
right. At the end of this step, g; ; < ;54 for alli = 1,3,5,..2p+1, and ¢; 5 = g ;4
foralli= 2,4,8,..2p.

The row-column sort algorithm is defined as a repetitive application of steps 1

and 2 until one of the following terminating conditions is satisfied :



e

(a) all the columns are sorted i.e. no element has moved in the present column-
sort after a row sort, or
(b) no element has moved in the present row-sort after a column sort.

A step-by-step application of row-column sort is showed in Fig. 2.

In the remaining of this section we shall prove that the row-column sort
algorithm converges to a snake-like sorted sequence in a finite number of itera-
tions . Furthermore, we shall show that the terminating conditions (a) and (b)
above are necessary and sufficient. The actual complexity analysis is left for the
next section because it involves a complicated but interesting development

which deserves a separate discussion.

Theorem 1 The row-column sort algorithm terminates successfully after a finite

number of iterations.

proof Consider the n smallest elements in Q and assume they are randomly
distributed over the rows and columns of the array. The first column sort
will move these elements to the first row if initially they all happen to be
in different columns. The following row-sort will order them properly in
the first row , where they will remain regardless of further row or column
sorts. However, if all n smallest elements happen to be in the same
column (which is only possible if m = n ), the first column sort will order
them in that same column. By virtue of the alternating sorting direction
on the rows , a row-sort will have the effect of moving the elements on
odd rows to the leftmost column of the array and the remaining half to
the rightmost column. Clearly, at the beginning of the second iteration,
a column sort will move the n smallest elements to the upper half of Q.
The second row-sort will then pair the elements on the two left-most
columns for odd rows, and on the two right-most columns for the even

rows. Following the same reasoning, it is not difficult to see that the



column sort of the p+1 iteration will move the n smallest elements of Q to the

band defined from rows 1.. ar”T(rr-:call we have assumed m = n ). Without loss of

generality we can assume n to be a power of 2 and conclude that the n smallest

elements of Q will move to their sorted positions in at most log'n iterations.

It follows from the above discussion that for m < n bringing the n smal-
lest elements to their final sorted position will take atmost log m itera-
tions.

It is evident that once the first row is in place it will remain there
throughout the remaining iterations . Therefore, we face now a problem
of sorting a reduced array @-, of dimension m —1xn . Each time a row is
in its place, we reduce the problem to a smaller array on which the smal-
lest elements are brought to the ‘first' row in ﬁog(m—k )] iterations
where k is the number of previously discarded 'first’ rows. The total

number of iterations to sort the whole array Q thus becomes

k=m -1 :
ﬂ log (m —k) |
k=0
which is bounded from above by m logm and is a finite number. Q.E.D.

In proving theorem 1 we have assumed that after the ‘first’ row of array @
is in place all the remaining elements are randomly distributed in the reduced
array @_i-; . This is not the case as we will show in the next section which gives
us a much better bound than what the theorem suggests. Nevertheless, we
should allow the algorithm to terminate if the current permutation has achieved
the desired snake-like row-major sorted sequence. This is the purpose of the ter-
minating conditions (a) and (b) defined previously. It is obvious that in a snake-
like sorted array, both rows and columns are sorted in directions imposed by

this indexing scheme. Conversely, if the rows and columns are sorted, the array

1. Throughout this paper log will be assumed to be to the base 2 unless otherwise mentioned.



==

is sorted. Therefore, conditions (a) and (b) above are equivalent and are neces-

sary and sufficient terminating conditions.

The reader may note that in snake-like row-major indexing scheme, an
array is sorted if all the rows are sorted (in the required directions) and
columns 1 and n are sorted from top to bottom. In fact, our proposed algorithm
will also converge if the column-sort operation is restricted to the edge-columns
only but we shall see in the next example that it does not pay in the overall
number of iterations. To illustrate the row-column sort algorithm ,Strengthen
our observations, and motivate the reader to follow the complexity analysis in
the next section, let us study two simple cases.

Example 1 : row-column sort ina 2 x n array.

Consider only the first two rows of the array (fig 3 ). The arrows indicate the
direction of sorting. Consider two elements 91; and gz; in these rows (they are
in the same column). If 91j =Q92; then all elements to the left of q.; are less
than all the elements to the left of 9z;. Clearly, all elements to the left of ¢,
are less than gq,; from the direction of sorting and hence are less than g2
Therefore, they are less than all the elements to the left of g, j Which are
greater than g ; from the direction of sorting. Consequently, if 915 and gg; are
the elements in the last column all the elements of the first row are less than
those of the second row and thus the sequence is correctly sorted in a snake-
like row-major form. It only takes 1 iteration to converge. On the other hand if
91;=92; ,then all elements to the right of g, ; are greater than all the elements
to the right of 925 . Further if 91,; and gz ; is the first such column-inverted pair
(all pairs of elements to their left are in correct order ) all the elements will be
in their proper sorted rows after we swap all pairs of elements to their right. In
context of m = 2 (two rows), a column sort is simply a compare exchange opera-

tion. With another stage of row-sort we will get a correctly sorted sequence. This



-7-

means we need at most two iterations to converge. If we sort the edges alone we
will take as many iterations more as there are elements to be swapped. Intui-
tively one can see that only two elements can change rows in each iteration and

in the worst case where all elements have to get into the other row we will need
7 . :
at least 2—1teratlons.

Example 2 : row-column sort in an m x 2 array.
Let us consider now the special case of a mx2 array. We will designate the 2m

elements as 'Light’ or 'Heavy’ depending on whether they belong to the upper

?—rovm or the lower 1Z"—r‘ows in the final sorted array. After a column sort let us

assume we have k 'Heavy' elements in one column and m-k 'Heavy' elements in
the other column. The number of 'Light’ elements are m-k and k respectively.

The next row-sort will redistribute the elements such that we will have exactly

%— 'Light' and 'Heavy' elements in each column(see fig 4). So after the next

column sort we have the 'Light’ and '"Heavy' elements in the proper halves. This
argument can be applied recursively to show that we take O(log m) iterations to
obtain a correctly sorted sequence. It is not easy to extend this simple analysis
as we go on adding more rows or columns (to make up an mxn array) since it
becomes increasingly difficult to keep track of the relationship between any two
arbitrary elements of the array. In the next section we will show that the algo-
rithm converges in O( logzm ) iterations in the general case. For the sake of sim-
plicity we will assume m and n to be a powers of 2. This won't harm the asymp-
totic performance since it will only affect the performance by a constant factor.
Moreover for the convenience of the arguments we will consider all the elements
to be distinct which will not affect the validity of the proof.( Knuth[8],pp 1968 due

W.G. Bouricius 1954)



III. Analysis of the algorithm

We shall pz‘ove' that the row-column sort converges in O(log m) iterations,
for an mxn array, by induction on the number of iterations it takes for an ele-
ment to go within a specified distance of its final sorted row. It will be seen that
the row distance for all elements decreases by a factor of 1/2 every 2 iterations.
Once all elements are in their final sorted row (distance is zero), -the procedure
terminates with a row-sort. This brings all the elements to their final sorted
positions in both rows and columns. The outline of the proof is as follows

(1) We shall first show that O(1) iterations (actually 2) leaves any element, and
hence all elements, within -Z,Lrows of its final sorted row. Henceforth we will

refer to the final sorted row of an element as its 'destination row’. This will form
the basis for induction.

(2) We shall assume that an arbitrary element (and hence all elements) will be

within ;Tof its destination row after O(p) iterations ( actually 2p iterations) and

prove that the same element will be within a;;n'—ﬂof its destination row in at most

two more iterations. This will establish that the algorithm converges in O(log m)
iterations? Recall from the previous assumption that m is a power of 2, which

does not affect the asymptotic performance.
Before we proceed.with the actual proof let us define some terms formally
to avoid ambiguity.
Definitions :
1 Each 'iteration’ consists of (a) column-sort, followed by,
(b) row-sort.

2. Note that the number of iterations should not be confused with the actual number of
steps of the whole process which is [ m*(time for row-sort) + n*(time for column-sort)] *

logm



- T3

2 An element is said to be within k rows of its ‘destination’ row r if the element is

in a row ¥ in the range r + (k-1) .

3 An element 'E' in a column will be called even(odd) if it is in an even(odd) num-

bered row, the top row being assigned number L.

We shall make use of a very interesting result, published by Gale & Karp[4], and

stated again here for the sake of completeness.

Theorem 2: In a rectangular array, a row-sort preserves a column-sort when all
rows are sorted in the same direction and all the columns are
sorted from top to bottom.

An important implication for our analysis is stated below as Lemma 2.1.

Lemma 2.1:For the row-column sort algorithm, the elements in alternate rows in

a column remain sorted after a row sort has been done following a
column sort. In other words, the row sort does not destroy column

sorting in alternate row positions. -

proof : From theorem 2 we know that a row sort (here we mean all the rows
being sorted in the same direction) does not destroy the column sort.
Since all the even (odd) rows are sorted in the same direction indepen-

dently of the other rows, we may consider two separate arrays of odd and

even rows each of dimension Tg'—x n . Therefore, the ordering of the ele-

ments in the even (odd) positions in any column is not tampered.

Qur analysis of the algorithm is based on counting elements
smaller(greater) than any given element in the array during various stages of

the procedure. The following theorem provides important results which will be



-10 -

frequently used in the rest of this section.

Theorem 3 Let E be an element in column vector c after ‘i’ iterations where i>1,
and let ngy and n, be the number of elements in even and odd rows in
column e, respectively less than (greater than) 'E'. Let Ny,
represent the minimum number of elements less than or equal to E
that can be accounted for in the whole array. The indices p and k can
assume values e(even) or o(odd) according to the following conven-
tion :

p = e implies ny = n, else if p = e then n, = n; and k = e denotes
that E is in an even row of column c else if k =o, then E is in an odd
row. Then the following hold for each of the four cases corresponding

to the possible combinations of values of p and k : the cases :
N = (2n, — 1) c,n—c +1})_+2(n, -n, +3/2)(n—-c+1)
Nye = (2ng + 2)( c,n—c +1})+2{n, -mng —3/2)(c)
Noo = (2ng )(mazic, n—f-‘+1})+2(m -ng +1/2)(c)

Neo = (2n, + 1) ¢, n—c +1])+z(n. -n, —=1/2)(n—c+1)

proof As it will be time and space consuming to go through all the cases indivi-
dually, we shall concentrate on one of them( Ny ) knowing that the rest

can be proved similarly. Fig 5 shows the situation after a column and



-11-

row sort. The arrows indicate the direction of row-sort and E is in an even
row. Since we have assumed that there are only n, elements in the odd
rows less than‘or equal to E, from Lemma 2.1 these must be in the first
n, odd rows. Similarly all the n, (=n,) elements must occupy the first n,
even rows which implies that E must be in 2 n; + 2 row. Two cases arise

according to max{c, n-c+1§.

Case : c s n-c+1.

Consider the 2n* row after a row sort (recall that an iteration ends with
a row sort) and let £, be an element in this row and column c. E; is less
than E from lemma 2.1 and so are n-c+1 elements to the right of £ ,
from the direction of sorting (Fig 5). Now consider the situation just
before the row sort. Since a row-sort permutes elements within rows, the
n-c+1 elements less than E are already in row 2n,. As a column sort pre-
cedes a row sort,all columns are sorted, and there are at least n-c+1 ele-
ments less than 'E' in row 2n, , there must be at least n-c+1 elements
less than E in the all the rows from 1.. 2n,—1. In the row where E is
present, there are atleast n-c+1 elements less E and so the same
number of elements less than E exist in all the the rows from 2n, to
2n, + 2. Adding these numbers we can account for ( 2n, -1)(n-c+1) + 2(

ne — M, + 3/2)(n-c+1) elements less than E in the whole array.

Case : c 2 n-c+1.

Now consider the 2n, —1% row. From the direction of sorting (odd row)
there are at least ¢ elements less than E. Following the same argument
as above there will be at least ¢ elements less than E in each of the rows

above. Also we have n-c+1 elements less than E in the n, + 2 even row



a2

and by an analogous argument we have n-c+1 elements less than E in
each of the 2n, .. m, +2 rows. Adding the two components we have Ngg = (
2 n, -1)(c) + 2( ng —m, + 1)(n-c+1) Q.E.D.
Corollary 3.1 : The above results also hold for any subarray k x n of the entire
array for k < m.

Theorem 3 is a representative of the many cases that may arise from the
various positions of an arbitrary element in the array. To simplify ‘our analysis
and prevent unnecessary rigor, we shall work out representative cases.
Nevertheless, we stress that the proof is complete, and the reader may satisfy

himself by working out each individual case in a similar fashion. Moreover, we

will only show the proof for E moving within 7 + ;%rows in O(p) iterations ; the

arguments for E moving within 7 — %rows apply from symmetry by numbering

the rows and columns in opposite directions, and keeping track of elements

greater than E.

Corollary 3.1 : The above results also applies to any subarray k xn of the
entire array for k < m.

PROOF OF THE INDUCTION BASIS

Consider an element 'E’' in column ¢ whose destination row is r such that
there is no element below E in column ¢ with the same destination row. Assume

that E is in even row. We are considering the situation after one iteration. This

element will not move within 1';'—lr'c)wzs of row r in the next column sort if, and

only if, there are r + %—1 or more elements in column c less than E. We will

prove by contradiction that this cannot be true. Assume that there are m, and

m, elements in the odd and even rows less than E such that



-13-

m, +m,2r+zg-'——1 (1a)

Without loss of generality assume m,<m,. Clearly r<m, and m, < —722———1

since the maximum number of even (odd) elements in a column is r;._

From Theorem 3, the number of elements less than E in the array is atleast

N=(2m, —1)(maz [c n—C +1] Y+2(mg — my +3/ 2)(n—c -;-1)

from case N,;,. Two cases arise according to max{ c, n-c+1j.

Case : If ¢ > n-ct+l then ¢ > 2+l which implies ¢ = ‘n;l + & where
Ds.ssnglascs'n (2a)
N can now be written as

N=(2m,—-1)(c)+2(my —my+ 3/ 2)(n—c +1) (3a)

From the assumption m, = m,, the value of the second term is at least 3(n - c +

1).

Substituting the value of ¢ from 2a

[ ] [
N22ml%+el—n;1—s+ 3["’;1-8 (4a)
=> Nam.,,n+m.,+2m.,s—~n;1—£+3n;1—38 (5a)
=> Nam,n+m,+(2m,s—2£)+2n;1 — 2¢

As m, = 1 we can rewrite the inequality by dropping the term (2m,z — 2 ¢)

n+1 .
-

n—1,
5/

=> Nz=zmyn +m, +2 2(



< 14 =

The maximum value of & from 4a was substituted to get the lower bound of N and

by straightforward manipulation we obtain

Nz2m,n +m, +2

This is clearly greater than rn sincer = 1 and m, =7 . For the case n—c+1=c
we can account for more elements. Since there can be atmost rn elements less

than E in the whole array, we have arrived at a contradiction by assuming that

=

> (or more) elements in column c less than E.

there arer +

Proceeding in a similar manner it can be shown that E won't move above
'r—%— rows by enumerating the elements greater than E in column c . E will
move up further than this only if the number of elements in column c greater
than E exceeds 3?—-—1‘. We can also argue, by numbering the rows from below

that all the expressions remain the same. As E was assumed to be the extreme

element in an arbitrary column c¢ with destination row r obviously all other ele-
ments with destination row r will also move within the 7 * 1%"—range. Since this

holds for an arbitrary row r it occurs simultaneously for all rows in the array.
This completes the proof of the induction basis. Q.E.D.

INDUCTIVE STEP

For this part we will show that if an arbitrary element E is within %rows of its

destination row after O(p) iterations, it will be within %—after 2 more itera-

tions. Stated otherwise, we will show that the algorithm converges in 2(log m)

iterations.

Theorem 4 :After O(p) iterations all the elements currently in rows 1 .. (r- g—)



=18 -

are less than E and all elements currently in rows r + —;—ae greater

than E.

proof This follows directly from the induction hypothesis. Since all the ele-

ments are assumed to be within ng°f their destination rows after O(p)

iterations, all the elements inrows 1 .. (r - g—) have their destination

rows above r and thus these elements are less than E. A similar argu-

ment follows for the elements greater than E. Q.E.D.

The method used to prove the inductive step will be similar to the proof of

induction basis : counting elements in column ¢ which will prevent E from mov-

ing within the specified distance of ;Trows of its destination row r in two

more iterations. We shall need to introduce some more properties.

Definition 4  The columns in the ranges 1.. '%and %ﬂ..'ﬂ- will be referred to as

'side-bands’.

The columns in the range g— . %ﬂ. will be called the 'center-

band’.
Theorem 5: In the next column-sort, following the O(p) iterations, all elements

whose destination row is r, and currently present in the side

bands, will move within the required range of 7 + EPLH'

proof From Theorem 4 we know that all elements in the in the rows out-

side the range 7 tz%are less than or greater than E and thus will

m

P+ rows of its destination row

not interfere with E moving within



-16 -

in the subsequent iterations. E will be prevented from moving

within the required range if there are more than Bt g

2P op+1
elements in the column, within this region (see fig 8), less than or
greater than E, which is assumed to be in odd row.

Let g, and g, denote the number of odd and even elements in this

region less than E in column c. If r is an even row it is clear that

90 e < g“ 1 e (1b)

Assume that E will not move above r+—2;":—lin the next column

sort which is possible if, and only if,

Qo +9a = §+ 2,"1, -1 (2b)

Without loss of generality assume g, < g,. (3b)

From 1b and 2b ¢, .9 = (4b)

m
rtl
Also from 2b and 3b

1 m
=> (o= E[zmT+ zp—ﬂ] (5b)

Applying corollary 3.1, the number of elements less than E in this

region is (corresponding to N,, ) given by



-17 -

N=(2q, )( c,n—c +1])+2(q,, —ge+1/ 2)(c)

Note that the lower bound for N will be given by the condition

9o +q9e = ;'* 29"11 - (6b)

To ensure minimality, assume that n-c+1 = c. Substituting the
value of gg from 8b we have
By 2d+1/2)

Nz 2(n—c+1)(-%+ én'ﬁ—— go—1) + 2c(2g, + 1- F+ T

=> N= 2(n—c+1) - %i -2(g, +1)(n—c+1)—2c ;%+ 2;':'_1 | + 4g,¢ + 3¢

From 4b
m m ]
;" o+l
Substituting
_1im m ]
Qo = 2—[2" + e + &
where 0 < ¢ 2::2
m m m m m
N 2-65—4-2?—_”]4-71?4'?*" 2n—2n£+5c+£(6c—2)+2p+§p—;

(]
=> N = (n—c+1)lz,f+§m-]—2n—-2ns+5c -28 -1

-2



-18-
Following from the condition (n -¢ + 1) = g—n Le. ¢ < é_n and

substituting ¢ = :—;—n +1-Z we obtain

m m n - n -
ET P+l —2n—2n£+6£(-3—+1—c)+5(:—3—+1—c)—23—2
[
_ mn_ __m SN sk _n
= +t:lzp+2p+1 Be — 5| + 48 + 3 3
Sincess%z—-lforallvaluesofs. we get
nm n n
= —+ —=C - —t+4c +
N 2P 3 "¢~ 3 4c + 4 (7b)

by substituting back the value of €

From Theorem 4 we know that in rows 1 .. (r - %) there are

nxP-éﬁ—] elements less than E. Also note that in the 7 — %+ 1

row, all the elements have a destination row r or less than r,
though we have accounted for only (n-c+1) elements (which we
know are less than E). By adding the remaining amount to N, the

number of elements with destination row 1..,r ,and currently

mmn

present in rows 7 & B is + 4g¢ + 3 , which is greater than

2r

8 We have thus accounted for more than nr elements in the

2P

array with destination rows l..r , which evidently is impossible.

Therefore there cannot be more than By =t —1 elements in

zp 2p+l
column c which will prevent E from moving within the required

region.



-19 -

We arrive at a similar conclusion by considering ¢ = n-c+1. Q.E.D.

Lemma 5.1

After one iteration, following the O(p) iterations, all the elements

present in the center band below the range 7 + 2mThave a destination

row greater thanr.

proof Consider the situation after a column-sort (following the O(p) iterations).
From theorem 5 the side bands do not contain any element of row r
below this range. Hence all the elements in these bands and below this

range are greater than the elements of row r. With the next row sort the

element 'E’, if present in the center band and below row r + E?;—l—.will

definitely move into one of the side-bands (depending on the direction of

sorting). After the row-sort, all the elements that occupy the center

band below row r + P+l are greater than all the elements of row r

because they came from the side bands after row sorting. Q.E.D.

With the next column sort two cases arise
Case 1 : Any element present in the side bands with destination row r will move
up within the required range (from theorem 5).
Case 2 : Any element that moved up within the required range during the last

column sort and presently in the center band, owing to the last row-sort will

remain in this range since all elements in the center band below r + 2::‘ are

greater than E (following Lemma 5.1).

Following a similar procedure, we can show that the element E does not move

above 7 — row after two more iterations following the O(p) iterations.

api-l



-20 -

This completes the proof of the inductive step. Q.E.D.
At the end of section Il we mentioned the difficulty in keeping track of the data

movement in an m X n array under successive row-column sort iterations. We

were successful in showing that the elements move within -Z-?-rows of their des-

tination row in O(p) iterations. Hence the O(log m) number of iterations for the
whole procedure to converge.

To show that this bound is tight consider the following initial data distribution :
All the elements belonging to the first row being distributed one in each row in a
mxn array. This is similar to the case considered under theorem 1 in the previ-
ous section and will obviously take Q (logn) iterations to converge.

For the remaining discussion we will assume the array to be square i.e. nxn,

This will help to achieve a balance between the two steps of each iteration.

IV. Optimizing bubble-sort for VLSI implementation

In spite of the terrible performance of a normal single processor bubble
sort, efforts have directed towards obtaining efficient VLSI implementations ([5],
[8]) because of the inherent simplicity of the algorithm. For this purpose a
parallel version of bubble sort viz. odd-even transposition sort([6]) has been
adopted. By using crossing sequence techniques, several researchers have
shown that the optimal AT? bound for sorting n elements is O( n? ) in word model
and O( nlog®n ) in bit model ([3],[5],[8]). The normal N/2 processor bubble sort
where each processor performs one compare-exchange operation during each of
the N iterations behaves horribly ( O( n® ) ) with respect to the AT? measure.
This remains unchanged even by using completely pipelined bit-parallel com-
parison exchange modules to sort more than one problem instance. The pipe-
lined scheme consists of O ( n?) comparators which reduces the effective area

by a concurrency factor(n) - the time remaining unchanged ([5]).



-21 -

Let us analyze the performance of our row-column sort algorithm by using
bubble sort to execute the basic sorting step of each iteration. Fig 7c shows the
implementation of thé row-column sort using a pipelined scheme where each of
the n rows(columns) are pipelined through this sorting network. The ‘Transpose/
Detranspose ' network aligns the array properly for the next column (row) sort.
Following Leighton's[3] argument, the Transpose/Detranspose network needs n
non-unit length wires and hence occupies 0(n?) area where the transposition is
performed in n parallel stages by hardwiring the rows to the corresponding
columns (and vice versa- see fig 7b). The bubble-sort network consists of n?
comparators and thus the total area of the network is 0( n?logn ). We will need
2n word steps to sort all the n rows (columns). Each comparator is capable of
performing a compare-exchange operation of two O(log n) bit numbers in 0(1)
time. As observed previously the Transpose/Detranspose network also needs
0(n) time for each iteration. Since we need log n iterations the AT? performance
for this scheme will be

O(n2logn)x0((nlogn)?) = O(n*log®n)
This is only O( logn ) away from the lower bound. A similar result can be
obtained for the bit model by using bit-serial compare exchange modules. Each
compare-exchange module can perform a compare exchange operation every
O(log n) time units and can fit into an 0(1) by O(log n) unit rectangle. Thus the
bubble-sort circuit occupies an area of O( n?logn ) units. The
Transpose/Detranspose circuit consists of n non-unit length wires which occupy
an area of O ( n? ) units. Each of these wires routs O(n logn) bits of data and
thus takes O(n logn) units of time to complete the operation. The total time is
0( nlog?n ) and so the AT? measure for this scheme is O( n*log®n ). This is a fac-
tor of log?n away from the optimal which is O( n*log’n ) for O( n?) O(log n) bit

numbers ([3]).



-22-

As noted by Thompson[5], this network needs very little in the way of con-
trol as no complicated operations are involved and may be more attractive than
its AT? performance indicates (being a couple of log n factors away from the
optimal). There is hardly any need to overemphasize that this scheme of sorting
which exploits the powerful property of the algorithm has made bubble-sort
comparable to some more sophisticated VLS] sorting networks as far as area-

time? trade-off is concerned.

V. An orthogonal access multiprocessing architecture for row-column sort

It has been customary to associate two-dimensional sorting algorithms with
mesh connected or systolic processor arrays. Current VLSI technology has
strongly influenced efforts towards better and faster sorting in such architec-
tures. However regardless of the simplicity of the basic processing element, a
mesh-connected processor array is far more complex than standard VLSI
dynamic memory devices. While the latter have reached 256K bits per package,
only a 72 PE array is currently available from NCR. It is therefore still of theoret-
ical interest, and probably impractical to sort large sequences in VLSI PE
arrays. Other multiprocessor architectures may prove to be more viable solu-
tions to the problem by taking advantage of high-density storage devices while
utilizing fewer, faster, and more powerful processors. Consider the row-column
sort algorithm - it exhibits an inherent parallelism in the basic sorting step that
can be executed simultaneously for all rows(columns) of the array. The
approach requires a storage scheme that will allow a number of processors to
access the two-dimensional array both by rows and columns. Data skewing and
scrambling together with appropriate interconnection networks have been sug-
gested for this purpose (ILLIAC IV and STARAN among others). In memory organ-
isations, where simultaneous access to more than one row or column is not pos-

sible, the row column sort algorithm would execute by sequentially sorting rows



-29 .

and columns. The row and column sequences would be sorted by an array of pro-
cessors using any qf the well known parallel schemes for sorting linear
sequences. Table 1 shows the performance of row-column sort using some well
known parallel schemes for performing the basic n element sorting step.

Table 1

Complexity figures with different sorting algorithms
Bitonic sort (n proc.) nlog®n
Bubble sort (n proc.) n?logn
mergesort(log n proc) n?logn

Sorting all rows(columns) simultaneously using O(nlogn) algorithms yield a time
complexity of O(n log® n) which is at least t; factor of log n better than the
approaches mentioned above. Fig (8) shows an architecture where ‘p' proces-
sors are connected to p® memory banks which contain the n? elements. Each
element g; ; is mapped into a memory bank M, ; such that s = i mod pandt =j
mod p.

Further, each of the memory banks M; ; is dynamically switched between £,
and #; during the row-sort and column-sort stage. This means that processor P,
has access to memory banks M,, during the row-sort stage and My n during

column sort (k = 1 .. p). So during a row(column) sort stage each of the proces-
sors has to sort ;Trows(columns) of the nxn array. Also note that in any of

these two configurations there is no contention for memory and the sorting can

proceed independently. This feature led to the architecture’'s name - Orthogonal



-24 -

access Mmemory.

To sort an individual row or column, the processors may use any of the

optimal single processor sorting algorithms like the heapsort or the mergesort
Thus we need O(n logn ) time for sorting each row or column and nx%ﬂ-for‘

sorting all the rows with p processors. Recall from section III, that except for

the first iteration in the column sort stage, we only need to merge two

sequences of Tz—Lelements in each eolumn (from Lemma 2. 1). Thus each iteration
2 2
will take O( E_l_ogf+_n_) steps. Since the algorithm converges in 0(log n) itera-
2 2 2
tions the total time needed is O( !-"—1952—“—;”9—“—) units, or O( 1%3-27—"-) units.

For a single processor implementation,(p =1) we need 0( nPlog®n ) time units
which means we are only a factor of log n away from the theoretical lower
bound. (For n? elements the optimal number of steps is O( nflogn?® ). The
speed-up obtained in this implementation is directly proportional to the number
of processors, the maximum being n by using ‘n’ processors to sort all the rows

or columns concurrently.

VI. Summary
The feasibility of sorting a rectangular array of elements by sorting rows
and columns was demonstrated. The algorithm was shown to execute in atmost

O(log m) iterations and in section Il we traced the data movement during each

iteration. Recall that we showed that all elements moved within O -27%-) rows of

its final destination row in O(p) iterations. Also taking advantage of this
phenomenon it is possible to optimize a simple algorithm like bubble sort. Sort-
ing a row(column) is actually sorting Vn elements in a n element sequence
which may be expensive. However this basic operation may be optimized by

using a sorting network as was demonstrated in section IV. The complexity of



-25-

this algorithm is more appropriately expressed as O ( Vn xkxlogn ), for an n
element sequence, where k is the time for sorting Vn elements, This is O(
Vnlogn ) for a single érocessor sort and was used as a basis for the multipro-
cessor implementation. For the sorting network, allowing pipelining, the com-
plexity turns out to be O( (Vn + k)logn ) which at the best will give us a time of
O( Vn logn ).

The multiprocessor architecture which can implement the - algorithm
elegantly because of its orthogonal access to the memory banks was originally
conceived as a high performance graphics system which can draw very fast vec-
tors of any orientation ([11]). This is one of the first general purpose applica-
tions suggested and it might be interesting to find other applications, which may

be efficiently implemented taking advantage of the orthogonal access capability.

Another interesting problem is mapping a two dimensional odd-even tran-
sposition sort on this row-major snake-like indexing scheme. Each iteration will
consist of performing compare-exchange on elements ( Zg;_, ;. T3 ; ) on all rows
independently followed by the same procedure on all the columns ( =z 25-1. T 25
) and then repeating the same with the elements ( T 5,T2i+14 ) in all rows and
elements ( z; 3;,%; 3;+, ) in all columns. It is not ciiﬂicult to see that such an algo-
rithm will result in a sorted sequence. If the upper bound for the number of
iterations is vV, then an optimal AT? implementation can be found using a
mesh of processors. The present algorithm can also be easily mapped to a mesh
of processors. A column(row) of the mesh of processors can perform the basic
column(row) sort by using nearest neighbour communication for odd-even tran-
sposition sort. So it will take O( Vnlogn ) compare-exchange steps which is a
factor of log n from optimal performance in such architectures([1]), neverthe-
less, no complex data routing steps are needed, which makes this scheme

attractive.



i

References

[1] C.D. Thompson & H.T. Kung . "Sorting on a Mesh-Connected Parallel Com-

puter,” Communications of the ACM, vol 20, number 4, April 1977.

[2] D. Nassimi & S. Sahni, "Bitonic Sort on a Mesh-Connected Parallel Computer,”

IEEE Transactions on Computers, vol c-27, no 1, Jan 1879.

[3] T. Leighton , "Tight Bounds on the Complexity of Parallel Sorting,” IEEE Tran-

sactions on Computers, vol c-34, no. 4, April 1985.

[4] D. Gale & R.M. Karp ,” A Phenomenon in the Theory of Sorting,"” Journal of

Computer and System Sciences, no. 8, 1972 ,pp 103 - 115.

[5] C.D. Thompson, "The VLSI Complexity of Sorting ." IEEE Transaction on Com-

puters, vol ¢-32, no. 12, Dec 1983.
[6] D.E. Knuth, "The Art of Computer Programming,” vol 3. Addison-Wesley 1973.

[7] J.D. Ullman, "The Computational Aspects of VLSI " Computer Science Press

1984.

[8] Lang Hans-Werner et. al. "Systolic sorting on a Mesh Connected Network,"”

IEEE Transactions on Computers, vol c-34 no. 7 July 1985.

[9] K. Batcher, "Sorting Networks and their applications,” in Proc. AFIPS Spring

Joint Comput. Conf, 1968 vol 32.



-27-

[10] M. Kumar & D.S. Hirschberg, "An efficient implementation of Batcher's odd-
even merge algorithm and its application in parallel sorting schemes,” IEEE

Transaction on Computers, vol ¢-32, March 1983.

[11] LD. Scherson, " A Parallel Processing Architecture for Image Generation
and Processing, " Preliminary Report, Dept. of Electrical and Computer

Engineering, U.C.S.B., E.C.E. Report No. 84-20, Aug 1984.



1 2| 3| 4| 1/ 21 3 4 |
5| 8| 7| 8| 8| 71 81| § |
g | 10 | 11| 12| | 10| 11| 12|
13 | 14 | 15| 18] |18 | 18 | 14 | 13|
fig la : Row-major indexing Fig b : Row-major smake-like indexing
1| 2 S| 8
3 - 71 8
g | 10/ 13| 14
11 ] 2] 18] 18]

Fig lc: Shuffled row-major indexing

1/ 5] 9] 13

2! 8] 10 14
'3 7| 11| 18
| 4| 8] 12] 18

fig 2a :In this distribution, the row and columns are sorted
in the direction imposed by row-major scheme but as a whole
the array is not ordered. This exampie shows why simply sorting
rows and columns in a straightforward fashion does not work.

T 5] 9 13] 11 5] 8 2
14 | 10| B8 | 2 | 3] 7| 81 4
T3] 7|11 18 14 | 10| 9 | 13!
l18) 12| B | 4| 1186 12 | 11| 15

Step-1b : After row-sort of the frst iteration. Step 22



{

1] 27 5] 8 L1 2] 4] 3
8] 7] 4] 3 | 8] 7] 5] 8
9 [ 10 ] 13 | 14 |9 [10]12] 11
18 | 15 [ 12 | 11| |18 [ 15 [ 13| 14
Step 2b Step 3a
1 2 3 4
8 4 8 S
9 | 10| 11 ] 12
18 | 15 | 14 | 13
Step 3b : The array is sorted according
to snake-like row major form.
| g1 I >
1 24 J
|34 | >

Fig 3 : The arrows indicate the sorting direction.




L N\UT

\ \

Fig 4 : The shaded area shows the 'Heavy' elements after a column sort.
As is evident from the figure, there are three distinct bands, one in which
rows have 'Light’ slements in both the columns, the ones with 'Heavy’
and the ones which are hetsrogenecus. It is in this region that the
row-sort will redistribute the 'Heavy’ and 'Light’ elements.

M=K

e

SN

Fig 4b : After the row sort it is clear that the 'Light’ and 'Heavy’
slements are distributed equally in within each column so that the
next column-sort packs them into the proper halves.




= —
| - | >
| < -]
2"\‘" | Eq >
2“\ | E'
|
Znt-h-z \ E
| |
| | |
Fig 5 : Element E is in column ¢ from left and
column (n - ¢ + 1) from right.
- 3ide= - S —Can tar P
Pand ' EXT ) oand |
PN e e e el M
Z?
S NRCARERAERANY; GV RRN 5 RANNY SNANANKRENAN
D57
L | E| |
b | e ey

Fig 6: 'r’ is the destination row of E
After O(p) iterations E is within -211:'& rows of r.



TN _\\\:‘_‘:----.:a
oo = ¥ 5 Y
AN AR 11

-

YD -

-
nubbie-sort network consisting of comparators

Fig 7a:N?

each of which can perform a comp

nit oumbers in O(log o) HSme.

are exchange operation of two O(log o)

- — o — — -

!
L

\

—: INPUT MATRIX

/

.

i
| |
! B i |
I :
: ;
| |
| |
Vol e e e an wm| w— —-——
l r J Ir y l: E
b |
QUTPUT
} MATRI X \
| ! |
% \i » = L :
| || L

- = — — —_ - - - - -

O(n*)

Fig 7b Transpose / Detranspose aetwori consisting of o wires.

L .’

.y W .



Bubble- ‘ | Tran- Bub- Detran-
sort , ‘ spose ble ‘ spose !
| net- | net-k. sort | mat-k !
work wor net- 1 work - |
j for work et ID
| column , for ‘
| sort. ’ row- i
| e |

Fig 7c : Pipelining scheme for sorting n?
elements using n element bubbie-sort network.
O(log n) passes through this network will produce
a sorted sequence.

MEMORY BANKS/SWITCHES

ERE I 09 bo I I EII
MR

L

PROCESSING
0) (1 e e UNITS MASTER
n PROCESSOR
(]
i
i

Fig 8: shows a 4 processor, 18 memory banks system

with the proposed architecture.



