Real World Fuzzing

Charlie Miller
Independent Security Evaluators
October 20, 2007

cmiller@securityevaluators.com

© 2005, Independent Security Evaluators

WWwW.securityevaluators.com

lYs|

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com

= Fuzzing 101

= Common Fuzzing Problems
= Code Coverage

= Examples

= Improving Code Coverage

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

= A form of vulnerability analysis and testing

= Many slightly anomalous test cases are
iInput into the target application

= Application is monitored for any sign of
error

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

= Standard HTTP GET request
§ GET /index.ntml HTTP/1.1

= Anomalous requests
§ AAAAAA...AAAA /index.ntml HTTP/1.1
§ GET //l/l//index.html HTTP/1.1
§ GET %n%n%n%n%n%n.html HTTP/1.1
§ GET /AAAAAAAAAAAAA . ntmI HTTP/1.1
§ GET /index.htmI HTTTTTTTTTTTTTP/1.1
§ GET /index.ntml HTTP/1.1.1.1.1.1.1.1

§ eftc...
© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Different Ways To Fuzz

= Mutation Based - “Dumb Fuzzing”
= Generation Based - "Smart Fuzzing”
= Evolutionary

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Mutation Based Fuzzing

= Little or no knowledge of the structure of the inputs is
assumed

= Anomalies are added to existing valid inputs

= Anomalies may be completely random or follow some
neuristics

= Requires little to no set up time
= Dependent on the inputs being modified

= May fail for protocols with checksums, those which
depend on challenge response, etc. [’ '9
i :)

= Examples:
§ Taof, GPF, ProxyFuzz, etc.

=] = L._;-_-
© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

Generation Based Fuzzing

= Test cases are generated from some
description of the format: RFC, documentation,
etc.

= Anomalies are added to each possible spot In
the inputs

= Knowledge of protocol should give better

results than random fuzzing
= Can take significant time to set up

= Examples
§ SPIKE, Sulley, Mu-4000, Codenomicon

© 2005, Independent Security Evaluators
www.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

Evolutionary Fuzzing

= Attempts to generate inputs based on the
response of the program

= Autodafe

§ Prioritizes test cases based on which inputs
have reached dangerous API functions

= EFS

§ Generates test cases based on code
coverage metrics (more later)

= This technique is still in the alpha stage :)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

The Problems With Fuzzing

= Mutation based fuzzers can generate an
infinite number of test cases... When has
the fuzzer run long enough?

= Generation based fuzzers generate a finite
number of test cases. What happens when
they're all run and no bugs are found?

= How do you monitor the target application
such that you know when something “bad”
has happened?

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

The Problems With Fuzzing

= What happens when you find too many bugs?
Or every anomalous test case triggers the same
(boring) bug?

= How do you figure out which test case caused
the fault?

= Given a crash, how do you find the actual
vulnerabillity

= After fuzzing, how do you know what changes to
make to improve your fuzzer?

= WWhen do you give up on fuzzing an application?

© 2005, Independent Security Evaluators
www.securityevaluators.com

Example 1: PDF

Have a PDF file with 248,000 bytes

There is one byte that, if changed to particular
values, causes a crash

§ This byte is 94% of the way through the file

Any single random mutation to the file has a
probability of .00000392 of finding the crash

On average, need 127,512 test cases to find it

At 2 seconds a test case, thats just under 3
days...

It could take a week or more...

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Example 2: 3g2

= Video file format

= Changing a byte in the file to Oxff crashes
QuickTime Player 42% of the time

= All these crashes seem to be from the
same bug

= There may be other bugs “hidden” by this
bug

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Code Coverage

= Some of the answers to these questions
lie in code coverage

= Code coverage is a metric which can be
used to determine how much code has
been executed.

= Works for source code or binaries,
although almost all the literature assumes
you have source

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Measures how many lines of code (source
code lines or assembly instructions) have
been executed.

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Branch Coverage

= Measures how many branches in code
have been taken (conditional jmps)

1f (2)
X

[

>

2;

= The above code can achieve full line
coverage in one test case (ex. x=3)

= Requires 2 test cases for total branch
coverage (ex. x=1, =x=2).

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com

Path Coverage

= Measures the number of paths executed

1f 2)

2)

I o || @
NV NV

(
a
1T (
b

= Requires
§ 1 test case for line coverage

§ 2 test cases for branch coverage

§ 4 test cases for path coverage
- i.e. (a,b) = {(0,0)

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

Tice

Path Coverage Issues

= |In general, a program with n “reachable” branches will
require 2n test cases for branch coverage and 2" n test
cases for path coverage
§ Umm....there’s a lot of paths in a program!

= [f you consider loops, there are an infinite number of paths

= Some paths are infeasible
if (x>2)
X=2;
1f (x<0)
x=0;

§ You can’t satisfy both of these conditionals, i.e. there is
only three paths through this code, not four

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Getting Code Coverage Data

= If you've got source

§ Instrument the code while compiling
* gcov
* Insure++
- Bullseye

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Getting Code Coverage Data

= If you live in the real world

§ Use Debugging info
* Pai Mel

§ Virtualization
* Valgrind
* Bochs
- Xen?

§ Dynamic code instrumentation
* DynamoRIO
» Aprobe

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Problems with Code Coverage

= Code can be covered without revealing bugs

mySafeCpy (char *dst, char* src) {
if (dst && src)
strcpy(dst, src);

}
= Error checking code mostly missed (and we don't
particularly care about it)

ptr = malloc(sizeof (blah));
if (!ptr)
ran out of memory();

= Only “attack surface” reachable
§ i.e. the code processing user controlled data
§ No easy way to measure the attack surface

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Now the Examples

= Note: we start with some source code
examples but move on to binary only

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

The Hello World of Code Coverage

= Simple program with 3 paths

int main(int argc, char *argv[]) {
if (argc == 2) {
if(strstr(argv([1l], "hi")) {
printf (" Hello world\n");
}
} else {
printf ("Wrong number of arguments\n");

}

return 1;

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com

= Compile with “coverage” flags

gcc —-g —-fprofile-arcs -ftest-coverage -o hello hello.c

= This generates a .gcno file for each object
file which contains static information about
it, such as locations of branches, names of
functions, etc

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Under the Hood

0x00001b0a
0x00001b0b
0x00001b0d
0x00001b0e
0x00001bl1
0x00001blo
0x00001bla
0x00001blc
0x00001b22
0x00001b25

<main+0>:
<main+1>:
<main+3>:
<main+4>:
<main+7>:

<main+12>:
<main+1l6>:
<main+18>:
<main+24>:
<main+27>:

push
mov
push
sub
call
cmp
Jne
lea
add
adc

ebp

ebp, esp

ebx

esp, 0x14

Ox2ffc < 1686.get pc thunk.bx>
DWORD PTR [ebpt8],0x2

O0x1b77 <main+109>

eax, [ebx+0x158a]

DWORD PTR [eax],Oxl

DWORD PTR [eax+4],0x0

= Additional code added to binary
= 64-bit global variable stores coverage information
= Dumped to disk when gcov_exit() is called

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

S ./hello there
$./hello hi there
Hello world

= \When you run the program, code
coverage information is stored in .gcda

files for each object file
= To process these files, run gcov

S gcov hello.c

File 'hello.c'

Lines executed:83.33% of 6
hello.c:creating 'hello.c.gcov'

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

lYs|

hello.c.gcov

- O:Source:hello.c
- 0:Graph:hello.gcno
- O:Data:hello.gcda
- 0:Runs:2
- O:Programs:1
2 l:int main (int argc, char *argvl[]) {
2 2 if (argc == 2) {
2 3: if(strstr(argv([1l], "hi")) {
1: 4 printf (" Hello world\n");
- 5: }
- 6: } else {
FHH#H#: 7 printf ("Wrong number of arguments\n");
- 8: }
2: 9: return 1;
- 10:}

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

In June 2007...

= A group of cunning, good looking
researchers hacked the iIPhone

= How'd we find the bug?

= Fuzzing + Code Coverage!

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Most Apple Internet applications share the
same code, WeDbKit

= WebKit is an open source library

= Source code is available via svn:

§ svn checkout http://svn.webkit.org/repository/
webkit/trunk WebKit

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://svn.webkit.org/repository/webkit/trunk
http://svn.webkit.org/repository/webkit/trunk
http://svn.webkit.org/repository/webkit/trunk
http://svn.webkit.org/repository/webkit/trunk

= From the development site:

The JavaScriptCore Tests
If you are making changes to JavaScriptCore, there is an additional test suite you must run before
landing changes. This is the Mozilla JavaScript test suite.

= SO0 we know what they use for unit testing

= Let's use code coverage to see which
portions of code might not be as well
tested

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= One problem with gcov is the data is
stored in many different files

= [cov is an open source software package
which collects data from a whole project
and displays it in a nice html report

= |t can be a minor pain in the ass to get to
work...

b

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Build and Run WebKit

= Build it:

WebKit/WebKitTools/Scripts/build-webkit -coverage

= Run the test suite:

WebKitTools/Scripts/run-javascriptcore-tests —-coverage

= Add a bunch of stupid links for Icov...sigh :(
= Collect coverage data

lcov —--directory WebKitBuild/JavaScriptCore.build/Release/
JavaScriptCore.build/Objects-normal/i386 -c -o testsuite.info

= Generate HTML report

genhtml -o WebKit-html -f testsuite.info

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

LTP GCOV extension - code coverage report

Current view: directory

Test: testsuite.info

Date: 2007-06-01 Instrumented lines: 13622
Code covered: 59.3 % Executed lines: 8073

feyatem/Library/Frameworks/JavavM. framework/HBeaders

fUpars/cmiller /woot/ WebKit /JavaScriptCore /APT

U {11 JWekKit/JavagerintCore/bindi

fUsera/emiller/woot / WebKit/JavaScriptCore/bindingas /o

fUsers/emiller/woot / WebKit/JavaScriptCora/bindings,/ini
. af

iehKit/JavaSoriptCore/kis I] 793 % 5723 /7219 lines

fUsers/cmiller/woot/WebKit/JavaScriptCore/pore B 54.7 % 1338 / 2445 lines

fUsers/emiller /woot /WebKit/JavageriptCore /ut £ — _—
fusr/include 1 1000 % 2/ 2 lines
fusr/include/architecture/i386 1 1000 % 3/3 lines
fusr/inelude/c++/4.0.0/bits =] 500% 4/ 8 lines
fusr/share] 80.7 % 96/ 107 lines
JavaScriptCore/kis) 848 % 357 / 421 lines
kia S 00% 0/39lines

76.9 % 328 / 687 lines
100.0 % 21 /21 lines

|

Generated by: LTFP GCOV extension version 1.5

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

= 59.3% of 13622 lines in JavaScriptCore
were covered

§ The main engine (53% of the overall code)
had 79.3% of its lines covered

§ Perl Compatible Regular Expression (PCRE)
library (17% of the overall code) had 54.7% of
its lines covered

= \We decided to investigate PCRE further

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

... he Rest of the Story

= Wrote a PCRE fuzzer (20 lines of perl)

= Ran it on a standalone PCRE parser
(pcredemo from the PCRE library)

= We started getting errors like:

PCRE compilation failed at offset 6: internal error: code overflow.

= This was good

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

A Short Digression on iPhone Hacking:

- or - How To Write an Exploit by Fuzzing

= Using our evil regular expression, we
could crash mobileSafari (which uses
Webkit)

= We didn’t have a debugger for the iPhone.
= We couldn’t compile code for the iPhone

= We did have crash reports which gave
register values

= We did have core dumps (after some
IPhone modifications)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

All Exploits Need...

= To get control (in this case pc = rl5)
= To find your shellcode

= Q: How can you do this without a debugger?

= A: The same way you find bugs while
watching TV: fuzzing

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

Fuzz to Exploit

= \We generated hundreds of regular
expressions containing different number of
“evil” strings: “[[**]]”

= Sorted through the crash reports
= Eventually found a good one

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

A “"Good”

Thread 2 crashed with ARM Thread State:

rO0: 0x00065000 rl: 0x0084£800 r2: 0x00000017 r3: 0x15621561
r4: 0x00000018 r5: 0x0084ee00 ro: 0x00065000 r7: 0x005523ac
r8: 0x0000afaf r9: 0x00817a00 r10: 0x00££8000 rll: 0x00000005
ip: 0x15641563 sp: 0x00552358 lr: 0x30003d70 pc: 0x3008cbc4

cpsr: 0x20000010 instr: 0xe583c004

___text:3008CBC4 STR R12, [R3,#4]

_ text:3008CBCS8 BXEQ LR

__text:3008CBCC

__text:3008CBCC loc_ 3008CBCC ; CODE XREF: text:3008CBAOjJ
___text:3008CBCC STR R3, [R12]

= Unlinking of a linked list
= r3and rl12=ip are controllable
= OlId school heap overflow (gotta love Apple)
= Gives us a “write anywhere” primitive
= Hows it work? Who the hell knows!
HD Moore, who is an exploit writing genius, would be sad :(

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

More Fuzzing For Exploitation

= We decided to overwrite a return address
on the stack.

= How do you find it? Fuzz!

§ True fuzzing folks will call this brute forcing
and not fuzzing, but either way its easy...

Exception Type: EXC BAD INSTRUCTION

Thread 2 crashed with ARM Thread State:

rO0: 0x00065038 rl: 0x00000000 r2: 0x00000a00 r3: 0x00000001
r4: 0x00065000 r5: 0x380135a4 roe: 0x00000000 r7: 0x005523e4
r8: 0x00000000 r9: 0x00815a00 r10: 0x0084b800 rll: 0x00000000

ip: 0x380075fc sp: 0x005523d0 lr: 0x30003el8 pc: 0x0055ff3c
cpsr: 0x20000010 instr: Oxffffffff

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

PNG - with source

= libpng-1.2.16

» Used in Firefox, Safari, and Thunderbird
(and others)

= http://www.libpng.org/pub/png/libpng.html

© 2005, Independent Security Evaluators

WWwWw.securityevaluators.com

http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html

Build the Source

= ./configure CFLAGS="-g -fprofile-arcs -ftest-coverage"

= make (errors out)

= gcc —-g —-fprofile-arcs -ftest-coverage -I. -L/usr/X11R6/
lib/ -I/usr/X11R6/include contrib/gregbook/rpng-
x.c .libs/libpngl2 la-png.o .libs/libpngl2 la-
pngset.o .libs/libpngl2 la-pngget.o .libs/libpngl2 la-
pngrutil.o .libs/libpngl2 la-pngtrans.o .libs/
libpngl2 la-pngwutil.o .libs/libpngl2 la-
pngread.o .libs/libpngl2 la-pngrio.o .libs/libpngl2 la-
pngwio.o .libs/libpngl2 la-pngwrite.o .libs/libpngl2 la-
pngrtran.o .libs/libpngl2 la-pngwtran.o .libs/
libpngl2 la-pngmem.o .libs/libpngl2 la-pngerror.o .libs/
libpngl2 la-pngpread.o .libs/libpngl2 la-pnggccrd.o
contrib/gregbook/readpng.c -0 contrib/gregbook/rpng-x
-1X11 -1z -1lgcov

= result: contrib/gregbook/rpng-x

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Quick Test

S ./contrib/gregbook/rpng-x

$ find . | grep gcda
.1libs/libpngl2 la-png.gcda
.1libs/libpngl2 la-pngerror.gcda
.libs/libpngl2 la-pnggccrd.gcda
.libs/libpngl2 la-pngget.gcda
.libs/libpngl2 la-pngmem.gcda
.1libs/1libpngl2 la-pngpread.gcda

N~ TN T T T

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

How ‘bout a Little Dumb Fuzzing Action?

= Grab a PNG off the Internet

§ The first one | find is from Wikipedia:
PNG_transparency demonstration_1.png

= Zero out any code coverage data
§ lcov —--directory . -z

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Generate Some Files

= Use fuzz.c, the “super” fuzzer
§ Changes 1-17 bytes in each file

§ New value is random
§ Does this 8192 times

= The ultimate in dumb fuzzer technology

./fuzz > fuzz.out

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Use script.sh
§ Executes the program 10 at a time
§ Sleeps 5 seconds
§ Kills any processes
§ Repeats
§ Monitors CrashReporter log for crashes

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Get Code Coverage

= We covered 10.7% of the lines

cp *.c .libs/
lcov —--directory . -c¢ -o fuzz.info
genhtml -f -o fuzz html files fuzz.info

= This compares to

§ 0.4% for getting the usage statement
§ 745 of 7399 (10.1%) for opening the good file

* 43 more lines covered by fuzzing...

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= That code coverage kinda sucked...
= Did we choose a bad initial file

= Let’s try some other files...
§ Choose 4 other PNG's from the Internet

§ Fuzz them the same way
§ Collect data from each separately

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Good file B Fuzzed

15.00

11.25

7.50

3.75

File |

File 2 File 3 File 4 File 5

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

= Initial file can make a big difference

§ 50% more code coverage from file 2 than in
file 5

= What if we ran them all?

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

The Sum iIs Greater Than the Parts

Good file B Fuzzed

20

|5

File | File2 File3 File4 File5 Al

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

WTF is Going On?

= Each PNG contains certain elements that
requires some code to process

= Some PNG’s contain the same elements,
some contain different ones

= By fuzzing with a variety of different
PNG's, you increase the chance of having
different elements which need processing

= Charlie’s Heuristic: Keep adding files until
the cumulative effect doesn’t increase

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

A Brief Interlude Into PNG’s

= 8 byte signature followed by “chunks”

= Each chunk has

§ 4 byte length field

§ 4 byte type field

§ optional data

§ 4 byte CRC checksum

= 18 chunk types, 3 of which are mandatory

= Additional types are defined in extensions to
the specification

§ libpng supports 21 chunk types

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

PNG’'s From the Wild

= Collected 1631 unique PNG files from the
Internet

= Each file was processed and the chunk
types present in each was recorded

= Typically, very few chunk types were

present
Number of Mean number Standard Maximum Minimum
files of chunk types deviation
1631 4.9 1.3 9 3

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Distribution of Chunks Found

100%

75%

50%

25%

0%

10)C)

1€1C) 1CIC)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

= On average, only five of the chunk types
are present in a random file!

= 9 of the 21 types occurred in less than 5%
of files

= 4 of the chunk types never occurred

= Mutation based fuzzers will typically only
test the code from these five chunks

= They will never fuzz the code in chunks
which are not present in the original input

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Enter Generation-Based Fuzzers

= Since Generation-based fuzzers build test
cases not from valid data, but from the
specification, they should contain all
possible chunks

= This should make for a more thorough test

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

//png.spk
// Charlie Miller

// Header - fixed.
s binary ("89504E470D0OAIAOAM) ;

// IHDRChunk
s binary block size word bigendian("IHDR"); //size of data field
s block start ("IHDRcrc");
s _string ("IHDR"); // type
s block start ("IHDR");
// The following becomes s int variable for variable stuff
// 1=BINARYBIGENDIAN, 3=ONEBYE

s push int (0Oxla, 1); // Width

s_push int (0x14, 1); // Height

s push int (0x8, 3); // Bit Depth - should be 1,2,4,8,16, based
on colortype

s push int (0x3, 3); // ColorType - should be 0,2,3,4,6

s _binary ("00 00"); // Compression || Filter - shall be 00 00

s push int (0x0, 3); // Interlace - should be 0,1

s block end("IHDR");
s binary block crc word littleendian ("IHDRcrc"); // crc of type and data

s block end("IHDRcrc");
© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

Generation Gap

30.0

22.5

15.0

7.5

File |

File2 File3 File4 File5

© 2005, Independent Security Evaluators

wwWw.securityevaluators.com

All

Gen

lYs|

http://www.securityevaluators.com
http://www.securityevaluators.com

Halting Problem (Again)

= During all this testing
§ Used mutation and generation based fuzzers
§ Generated over 200,000 test cases
§ Not one crash

= This is a common occurrence for difficult
or well audited target applications

= Raises the question: Now what?

= Answer later...
§ (Hint: has to do with code coverage)

© 2005, Independent Security Evaluators
www.securityevaluators.com

Even More Halting Problem...

= Added 20 “fake” bugs to a server

= Ran ProxyFuzz, a mutation-based fuzzer
against it for 450 minutes

= Recorded when each bug was found and
how often

© 2005, Independent Security Evaluators

WWwWw.securityevaluators.com

Time Required To Find a Bug

Time Bug First Discovered (in minutes)

450

360 -

270 — T

180 — T

I 2 3 4 5 6 7 8 9 10

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

Number of Times Discovered

Number of Times Bug Discovered

260

208 1 H H -

156 1 H H -

04 4 H H I

0 —— ——

I 2 3 4 5 6 7 8 9 10

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

= Sometimes you find a “rare” bug earlier than
an “easy’ bug
= There are discrete jumps in the time between
finding bugs
§ 4 bugs found in the first 3 minutes
* Then it took 76 minutes to find the next one
§ 8 bugs found in the first 121 minutes
» Then it took another 155 minutes to find the next one

= The final hour didn’t find a new bug, what if |
would have run it another 24 hours?

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Code Coverage is...

= \We've seen that code coverage is
§ A metric to find results about fuzzing

§ Helpful in figuring out general approaches to
fuzzing

§ Useful to find what code to focus fuzzing upon

= More importantly:
§ A way to improve fuzzing and find more bugs!

§ Helpful in figuring out when fuzzing is
“finished”

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Suppose we didn't know anything about
PNG’s
= Could we have figured out what was

missing when we were fuzzing PNG with
the mutation based approach?

= Lets look through some of the Icov report

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Yup

W Tl e

5 447 Bl61 = else if iiini numwiini itr—?{:hunk nAmE , ini PLTE, 4))
448
frr— 449 8161 else if (!png_mememp(png ptr->chunk _name, png IDAT, 4))
— 450 1 i
_IIEI: 451 8147 : if iliini itr-}mvdu & PHNG HAVE IHDR”
[452
Spe——— 453 8147 : else if (png ptr->color_ type == PNG COLOR_TYPE_PALETTE L&
] 454 : | ({png ptr->meode & PNG HAVE PLTE))
_— 55 @+ png_error(sn_ptr, "Missing PLTE before IDAT");
456 I
457 Bl147 png_ptr->idat_size = length;
458 8147 png_ptr->mode |= PMG_HAVE_IDAT;
459 8147 = break;
——— 460 i }
= 461 : #1f defined(PNG_READ bEGD SUPPORTED)
E 462 14 : else if (Ipng memcmp(pn tr->chunk name, png bKGD, 4))
Sm— %3 04 png_handle bRGD(png pEr, info ptr, length);
464 : #endif
465 : #if defined(PHG_READ cHRM_SUPPORTED)
466 14 : elsa if (Ilpng memcmp(pn tr->chunk name, png cHRM, 4))
467 0+ g handle cWRM(png pEr, info ptr, length);
. 468 : #endif
. 469 : #if dufinudﬂPHG_HEAD_QHH&_SUPPURTED:I
o 470 14 : else if (Ilpng memc n tr->chunk name, png ghMh, 4))
p I 471
472 : #endif
473 : #if defined({PNG_READ hIST SUFPPORTED)
474 14 : else if (l!png memc n tr->chunk name, png hIST, 4))
475
476 : #endif
477 : #if defined(PNG_READ oFFs_ SUPPORTED)
478 14 : alse if (!png memc n tr->chunk name, png oFFas, 4))
— 479
480 1 #endif
= 481 : #if defined(PNG_READ pCAL_SUPPORTED)
———E— 482 14 : else if (!png memc n tr-»*chunk name, pn AL, 4})
e — 483
484 + #endif
485 : #if defined(PNG_READ sCAL_SUPPORTED)
486 14 : else if (!png memc n tr=>chunk name, png sCAL, 4))
267 I wripag WaudiaTscar(pag. wie; dnfe pAE; lasgiks]
488 + #endif
1 489 :+ #if defined(PNG_READ pHYs SUPPORTED)

430

Ad

H else if (!png memcm n tr->chunk name, pn HYs, 4))

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

Code Coverage Improves Fuzzing

= Finding spots in the code which are not
covered can help with the generation of
new test cases

= Beware: covered code doesn’t necessarily
mean its “fuzzed”

= Code which has not been executed
definitely still needs to be fuzzed!

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Digression into Binary Code Coverage

= So far, we've seen how code coverage
can give useful information to help fuzzing

= WWe've seen how to use gcov and Icov to
do this

= The exact same data can be obtained on
Windows binaries using Pai Mel

= Pai Mei exists for Mac OS X and is being
ported to Linux

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= A reverse engineering framework

= |Integrates
§ PyDbg debugger
§ IDA Pro databases (via PIDA)
§ pGraph graphing
§ mySQL database
= Gives the ability to perform

reverse engineering tasks quickly
and repeatably

= http://paimei.openrce.org/

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

= A Pai Mei Module
= Uses IDA Pro to get structure of binary

= Sets breakpoints at each basic block (or
function)

= Records and removes breakpoints that are
hit

= Allows for filtering of breakpoints

= Gathers code coverage for binaries

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

+ PAIMElconsale
Connections Advanced Help

Daka Sources Data Exploration Data Caplure
777 (Refresh Target List | | # EIP TID Madule Func? Tag Al | Refresh Process List |
.o w = E.ﬂwalahle Targets | 6hOSb3co 3396 u:uregra;t'l:-:... L bask PID Pr il
PAIMEIdocs £ B freech 2 6h0Sk040 3896 coregraphic,,. Y Lesk 2en -
F ’ 3 BhOShOSS 3696 coregraphic, .. hest tookery.axe)
= = safari 4 GhOShOSe 095 carecrantic. . bast = 1232 FHPLicensingServioe. exe
¢- m . 2132 PodSarvice.exe
5 z292 alg.exe
Functions: 1083 f 7069 Basic Blocks: 11575 J 123325 EES wacrithy e
i = i mmn l [“I 52 pvthorwe, exe
[/1| 3200 Safarl.exe 8
PAIN Elexplore Dereferenced Data ——
Lowad!: Browse
PIDA& Modules Coverage Depth
Func #EEB PICkS Module () Functions
&FF Bl 123325 coregraphic... (%) Basic Blocks
PAIME flofh.zz [restore 65 [|Heavy [#]unhanded o
I Add Madule(s) |_ Stark Staling
*] debugger hit éboazifa cc #1155& Al
*] debugger hit &éb0a’3zfc cc #11557
*] debugger hit &b0al4ly cc #1155E
i degugger nn: GEDE|34I'F CC #115E3
*| debugger hit €b0a2433 cc #115&0
PAINME Ipstaler *] debugger hit €bDal43f cc #11561
*] debugger hit €b0azdd4d cc #115&2
] debugger hit éb0a2470 CC #11563
*] debugger hit éb0az4f8 oo #11564
] debugger hit ébDaz4fc oo #1156%5
*] debugger hit &éb0dscss cc #11566
*] debugger hit ébodsdae cc #115&7
=] debugger hit ébodsdfd cc #115&8
*] debugger hit ébodsces cc #1156%
*] debugger hit &ébiddols cc #11570
*| debugger hit éblddézc cc #11571
*| debugger hit &blddEsl cc #11572
*] debugger hit éblddésc cc #11572
*] debugger hit éblddéal? cc #11574
*] debugger hit ebiddebz cc #1157%
*] Exporting 11575 NI1TE COo MySOL.
*] Function coverage at 15, Basic block coverage art 9.
w
Successfuly connected bo MySOL server at localhost. Process Stalker
© 2005, Independent Security Evaluators
—y]
www.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

= Can’t keep launching the process

= Have to have a way for it to keep loading
the fuzzed images

= Just use a meta-refresh tag and point the
browser at it

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

The Fuzzing Website

#!/usr/bin/perl

Sfile = SENV/{ 'QUERY_STRING' }s
Snextfile = Sfile + 1;

Sserver = SENV/{ 'SERVER_NAME' }s
Sscript = SENV({ 'SCRIPT_NAME' }s

Surl = "http://".S$server.S$script."?".Snextfile;
Spic = sprintf ("bad-%d.gif", Snextfile);
Spicurl = "http://".S$Sserver."/gif/".Spic;

print "Content-type: text/html

<head>
Fuzz!

"w.
14

print " <meta http-equiv=\"refresh\" content=\"2;Surl\">";
print " </head><body>";

print"</body>\n";

print "<Script Language=\"JavaScript\">";

print "window.open ('S$picurl');";

print "</Script>";

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

Missed PNG Basic Blocks

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

Using Pai Meli to Find the Code

= Do some general browsing in Safari under
Pai Mei

§ Avoid pages with PNG’s if possible
§ Stop when no more breakpoints are hit
= Record this code coverage in a tag

= Filter out on that tag and browse a bunch
of different PNG's

= [his will record those basic blocks used
only in PNG processing (mostly)

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

This Results In:

= Jotal basic blocks: 123,325
= Hit during “general browsing™. 12,776

= Hit during PNG only surfing with filter on:
1094 (0.9% of total basic blocks)
§ This includes 87 functions (out of 7069)

§ 61 of these basic blocks are in the "main”
PNG processing function

§ Most of the others are in “chunk” specific
functions

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Where’'s the Code?

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

Pai Mel Limitations

= Pai Mel is only as good as what IDA give it

§ If IDA misidentifies data as code, bad things
happen!

= Some anti-debugging measures screw it up

= Have to know the DLL you're interested in
§ Or load them all

= For large binaries, it can be slow to set all
the breakpoints

§ For this library, it takes a few minutes

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Increasing Code Coverage

= Lack of code coverage is a bad thing
§ Can't find bugs in code you're not executing

= How do you increase code coverage?

= Basically three ways

§ Manually
§ Dynamically using run time information
§ Automatically from static information

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

VELTTELY

= YOou can imagine
looking at the PNG

code and figuring
out how to get more

code coverage.

5

d
a
h

X,
ort loc_6B236798|

4

BN
test
jz

eax, eax
i short loc 6BZ236885

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

¥
BN 1l I

lYs|

http://www.securityevaluators.com
http://www.securityevaluators.com

Another Example

= Freeciv 2.0.9, a free multiplayer game similar
to Civilization

= Don't ever play this on a computer you care
about

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Steps to Code Coverage

= Get the Windows binary - no cheating

= Disassemble it

= Dump the PIDA file

= Launch civserver.exe

= Attach with Pai Mei's Pstalker

= Capture a netcat connection to it

= Filter this out (551 of 36,183 BB’s - 2%)
= Trace the fuzzing!

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Great, general purpose mutation-based
fuzzer

= Works on packet captures
= Replays packets while injecting faults

= User can manually tell GPF about the
structure of the data in the packets

§ Aids in the anomaly injection
= Many modes of operation

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Start up the game, play a bit
= Capture the packets to a file
= Convert the PCAP file to a GPF file

./GPF -C freeciv reg game.pcap freeciv reg game.gpf

= Fire up GPF (main mode)

§ Main mode replaces some packets with
random data

./GPF -G 1 ../freeciv reg game.gpf client <IP ADDRESS> 5555 ? TCP
kj38747ff 1000 0 + O + 00 01 09 43 close 0 1 auto none

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Not designed to be fuzzed :)

= Need to add a sleep to GPF so FreeCiv
can keep up

= Fuzz overnight...

= | recorded 96 functions during fuzzing
§ 614 / 36183 basic blocks

= Import data back to IDA
= Look for places to increase code coverage

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= A big switch statement | only hit once

e ———— ——————— e T T T P T P T T T T T T T T T T T T D 0) D 5) 2 B D D E i
— <

= Tracing back reveals this switch is
controlled by the third byte of the packet

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Back to GPF

= Up until now we’ve basically been sending
random data

= Using Pai Mel, we observe that the third byte
IS Important

= We modify GPF to make sure it changes the
third byte

= We've added a little structure to our random
data

./bin/GPF -G 1 freeciv reg game.gpf client <IP ADDRESS> 5555 ?
TCP kj38743ff 1000 0 + 2 2 00 01 255 41 finish 0 1 auto none

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Better Code Coverage

= 2383 basic blocks covered (after filtering)
§ Compare this to 614 with the first fuzz run
§ 4x improvement

@@@@F&Tﬂ?dﬂﬁ E*-J-ﬂ'--"-J T -J--wrf- ! -r:;J.—-qu@J i e 5] | ot Es

= All cases taken in switch (as expected)
= However, still no bugs...

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Manual Method Explained

= Send mostly random data

= Examine code coverage to see what
structure in the data is important

= Send data which has some elements set
but some mostly random parts

= Rinse and Repeat

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Fuzzing Beyond the 3rd Byte

= This command replaces the bytes 3 through 10 of

each packet, one at a time, with all possible values
from O to 255

./GPF -G 1 ../freeciv reg game.gpf client <IP ADDRESS> 5555 ?
TCP kj38743ff 1000 0 + 2 10 00 01 255 41 finish 0 1 auto none

= This will ensure that all the cases in the switch
statement are hit and each case will have some
random data

= After a bit, CPU is pegged: Memory consumption
bug!

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Dig Deeper

= Following the methodology, fix the 3rd byte
to, say Ox47

= Send in random data to that part of the
program

= See what you missed
= Try to do better

© 2005, Independent Security Evaluators

WWwWw.securityevaluators.com

Missed Some Spots

¥
ERN Ll
loc 4804B7:
mou [esp+58h+uar 58], offset sub 469588
mow ecx, offset sub 4695C8
mouy [esp+58h+uar 541, ecx
calll ZHSShvesizeE)
mou edx, [ebpsuar 4d]
mou [edx], eax
moy [esp+58h+uar 54], esi
mou edx, [ebp+uar LA]
moy 8ax, [edz]
moy [esp+58h+var 58], eax
call _ZHSshkasizelyl H
test eax, eax
mou edi, eax
jnz loc 48836F
1)
L]
E N =1
mou [esp+58h+var_54], esi lea esi, [esi+0]
mov ed®, [ebp+var_48]
mov eax, [edx]
nov [esp+58h+var_58], eax
call __2HSsfresizeEj_8
test eax, eax
mov edi, eax
jz loc 4B884F0
=
Yy
(R N Ll
o loc_ 48B4FO:
nov [esp+58h+var_54], eax| [mou [esp+58h+uar 58], esi
mouv edx, 86Ch moy eax, 8S6Ch
moy [esp+58h+var 58], edx| |[mou [esp+58h+var 58], eax
nov [esp+58h+var_58], esi| |zor eax, eax
call memcpy mou [esp+58h+uar_54], eax
call memset
jmp 1loc_ 480383
|
EAN L

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com -

http://www.securityevaluators.com
http://www.securityevaluators.com

Heap Overflow

= Can get a heap overflow if you send the
following packet:

27 2e|2f|0c| 00001394 |4141414141...
Length of Packet Length of memcpy Data

*

File View Debug Plugins Options Window Help

[€]CPU - main thread, module MSVCRT
TREE |

1 PR O s
FF2495 BEPACPT

FiOUS GUORD PR E5: (ED1T, DWORD
WORD PTR DS:LEDH# 447 PL47EES]
., EDT

8BC7 3]
BA_ 92600060 0, 3
B2E2 B4 .4
~72 ac IORT _MSUCRT. 77C46FC4

83E9 @3 3
EE X, ERY

FF2485 DBEFC47? WoRD PTR D
FF2480 CHPECEFF| JMP DWORD PTR Of

ERN#4477C46F0A]
ECHN4477C47008]

a8 HOP

FF2480 4CPACATT|JHMP DUORD PTR DS:[ECH#d477C47A40]

9a H

~E@_§F FONE SHORT HMSUCRT.77C47R4E = -
£477 0 PTR_DS: CEDI+C] Hodification of segment

PP JASHORT MSUCRT. 770 L { BOEEGAAA}
0167 B638678R |ROR DWORD PTR DS5:C(EDX+GRE7E3861, 1 bt e
46 N ES1 ae016216 L GE
9153 47018A46 |AOD DWORD PTR DS: [EAX+468AE1471, ECX X
a A00 AL, CL o

LJtP 7ABSFTF?
41

87 20006 1=777

Hew dump [BscIn
i3 [&
8| 0

AR

B 68 ae
09 90

‘Access violation when witing 1o [0072D000] - use Shilt+F7/FE/F3 1o pass exceplion 1 program Paused

© 2005, Independent Security Evaluators

wwWw.securityevaluators.com

Bugs In FreeCiv Aren’t a Huge Deal

= Fun for hacking your friends
= Also MetaServer is nice

Freeciv servers around the world

Last Players
Host Port Version Patches State Players Topic Update Available
88-134-81-104-)
e e 5555 209 none Running 32 2m 30
pSB20CS98 dipt-dialinnet 5560 209 wmé";?;ﬁ';f""“’“ Pregame 0 NEW GAME 27s 0
po0l-72-90-153-))
ey I 5555 209 none Runmning 10 New Game 2m 8
po0l-72-90-153-)
T TR AT 5556 209 none Running 2 New Game 2m 2
pool-72-90-133- 5557 209 none Ruming 9 New Game 165 9
69.nwrknj.cast.verizon.net
wsip-70-182-164-
A 5555 209 none Pregame O 39s 0
wsip-70-184-212- .
P rnen e e 5555 209 none Running 5 2m gl
ww10.ultico de 5551 209 Yvamerver-PepServer poo.ne 0 NEW GAME 2 0
0.9.5 devel
" Warserver - PepServer Game
ww10.ultico de 5552 209 05,5 devd Foded > NEW GAME 165 5
" Warserver - PepServer
ww10.ultico de 5553 209 09.5 denal Pregame 0 NEW GAME 48s 0
ww10.ultico de 5554 209 Yvamerver-PepServer poo.ne 0 NEW GAME 495 0
0.9.5 devel
ww10.ultico de ssss 209 vamerver-PepServer b NEW GAME 205 0
0.9.5 devel

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com r

Dynamically Generating Better Test Cases

= Manually improving code coverage is, uh,
“time intensive”

= Need to automate the process

= Autodafe kinda does this

= But | prefer another of Jared Demott’s
tools....

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Uses Pal Mel Pstalker to record code
coverage

= Uses Genetic Algorithms to generate new
test cases based on code coverage
feedback

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Genetic Algorithms

= Technique to find approximate solution to
optimization problems

= |nspired by evolutionary biology
§ Define fitness of an organism (test case)
§ Must define how to recombine two organisms
§ Must define how to mutate a single organism

= Lots more complexity but that is the basics

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

GA example

s f(x) = -x * (x — 10000)

= Use “single point crossover” of binary
representation of numbers for
recombination

677 : 00000000000000000000001010100101
9931 : 00000000000000000010011011001011

651 : 00000000000000000000001010001011

= Flip a bit 10% of the time for mutation
= Fitness is the value in the function

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Running it for a few generations gives

134 651 485 7653 1354 7654 134 7302
(1322044) (6086199) (4614775) (17961591) (11706684) (17956284) (1322044) (19700796)
1354 7652 134 7653 7302 390 1350 134
(11706684) (17966896) (1322044) (17961591) (19700796) (3747900) (11677500) (1322044)
390 7302 134 134 134 1350 134
(3747900) (19700796) (1322044) (1322044) 70 (695100) (1322044) (11677500) (1322044)
134 134 268 134 1350 134 134 2182
(1322044) (1322044) (2608176) (1322044) (11677500) (1322044) (1322044) (17058876)
134 134 134 2182 1618 134 134 2316
(1322044) (1322044) (1322044) (17058876) (13562076) (1322044) (1322044) (17796144)
134 1618 1612 132 2316 134 2322 1158

(1322044) (13562076) (13521456) (1302576) (17796144) (1322044) (17828316) (10239036)

= The optimum value is 5000

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

GA Approaches the Solution

= Generation vs most fit individual
= Approaches the solution

10000
8000 + -
6000 e M ‘
| \'l |

4000 . :
2000 L‘\/‘\ I[\ W_\-N/__ A l \l

O'm
1 13 25 37 49 61 73 85 97

Generation

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Most fit

http://www.securityevaluators.com
http://www.securityevaluators.com

= Fitness function: How many functions
were covered by the test case (in reality a
more elaborate measure is used)

= For breeding, tends to choose the most fit
iIndividuals

= Recombination: single point crossover that
respects “protocol tokens”

= Mutation: portions of data replaced with
fuzzing heuristics

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Connections Advanced Help

777

PAIMEidocs

Obligatory Screenshot

Data Capture

Data Sources Data Exploation
Refresh Target List [£ 0 Hoduls Func? Tag I Refresh Pracess List]
[Avaiable Targets PID Process
Target: {"c:\my dir\a.exe" args) or (a.exe!
Funidtians: Basic Blodks! Eaa SobEa
] Startseript: | ETN
Loadjattach: | [mronse |

Dereferenced Data

Coverage Depth Start
Wat:

(@ Functions () Basic Blocks

Database ko Save Hits

Mol il @cF Opamsi | LIPEHE
Func #B8 FIDA Module
[CIRestare s [JHeavy [[]Unhandied Cnly
Start Staking
After Stalk
(& Mone Ooetach O Terminate
on Crash
[dd Modue(s) @none Opetach O Terminate

[*] EFS (Evolurionary Fuzzing System), by Jared Demott
[*] Based on the FaiMei Process stalker module, by Pedram Amini

EF5

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

http://www.securityevaluators.com
http://www.securityevaluators.com

= Still needs a PIDA file
= Connect to database
= Add PIDA file to module list

= Enter pathname to application in Load/Attach
window

= Choose Connections->Fuzzer Connect
§ Hit “Listen”
= On Client

./GPF -E <IP ADDRESS> root <PASSWORD> 0 0 <IP ADDRESS> 31338 funcs client <IP ADDRESS>
5555 ? TCP 800000 20 low AUTO 4 25 Fixed 10 Fixed 10 Fixed 35 3 5 9 none none no

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

What You See

Successfully played generation 0. Saving to mysgldb.
Processing Generation O

Done processing. Time to play and process: 100 total
evaluations in

1001 seconds.

10.01 sec/eval

That's 16.683 mins or 0.278 hrs.

Successfully played generation 1. Saving to mysgldb.
Processing Generation 1

Done processing. Time to play and process: 200 total
evaluations 1in

1887 seconds.

9.44 sec/eval

That's 31.450 mins or 0.524 hrs.

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

Does It Work?

= The light blue line indicates the most fit pool of testcases
= Code coverage is (slowly) improving

Hits

15

For civserver.exe: Overall look at GPF_ID=0. IP=192.168.1.89. Hits=hit_ funcs. Num Poocls=4
- Seszion Average Best Seszioh =— Pool Average Best Pool ”

95 -
a0 -
85
80
75+
70+
65
60
55
50
45+
40+

35
30 -
25
20
10 L L
0 10 20
(€]

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

lYs|

= Still experimental

= GA's can get stuck in “local maxima”

= GA's have so many parameters
(population size, initial population,
mutation percentage, etc), hard to
optimize

© 2005, Independent Security Evaluators

wwWw.securityevaluators.com

lYs|

Statically Generating Code Covera

= GA's attempt to provide an approximatsi
solution to a difficult problem

ge

ng

= We have the binary, we have the control

flow graph, we have the disassembly...

= What if we “solve” the problem exactly?

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

lYs|

= Microsoft Research has a tool that generates
code coverage maximizing test cases from
binaries

§ ftp://ftp.research.microsoft.com/pub/tr/
TR-2007-58.pdf

= Catchcov (built on Valgrind) does something
similar to try to find integer overflows

= Greg Hoglund has something which tries to do
this
= Nothing freely available

© 2005, Independent Security Evaluators
www.securityevaluators.com

General Idea

= |dentify where user supplied data enters
the program

= Data needs to be traced (symbolically) and
branch point’s dependence on initial data
recorded

= These equations need to be solved, i.e.
iInputs need to be generated which can go
down either branch at each branch point.

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Input comes in through argv [1]
= test () takes an this value as an int
= 3 possible paths through the program

int test(int x) {
if(x < 10){
(

if(x > 0){

return 1;

}
}

return O;

}
int main (int argc, char *argv([]) {

int x = atoi(argv[1l]);
return test (x);

}
© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

Tracing the Data

= Use Valgrind or PyEmu?

= In this trivial example, we'll just do it by
hand.

= The constraints would look something like

x >= 10
0 < x < 10
x <= 0

= In real life, there would be thousands of
such constraints

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

Solve the Constraints

= Can use a Boolean satisfiability solver (SAT)

= One such solveris STP
§ Constraints expressed as bit vector variables
§ Bitwise operators like AND, OR, XOR
§ Arithmetic functions like +, =, *
§ Predicates like =, <, >

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

In the STP Language

X : BITVECTOR (32) ;
QUERY (BVLT (x, Ohex0000000a)) ;

X : BITVECTOR (32);
ASSERT (BVLT (x, Ohex0000000a)) ;
QUERY (BVGT (x, Ohex00000000)) ;

X : BITVECTOR (32);
ASSERT (BVLT (x, Ohex0000000a)) ;
QUERY (BVLE (x, Ohex00000000)) ;

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

http://www.securityevaluators.com
http://www.securityevaluators.com

Solving These Gives

= This gives the test cases x={12, 0,

= These give

$./stp

maximal code coverage

-p gl

Invalid.

ASSERT (
S ./stp

x = 0hex0000000C)
-p g2

Invalid.

ASSERT (
$./stp

x = 0hex00000000);
-p a3

Invalid.

ASSERT (

x = 0hex00000004);

© 2005, Independent Security Evaluators

wwWw.securityevaluators.com

4}

lYs|

Using This Technique

= Very sophisticated constraints, such as
those that found the Freeciv bug, could be
solved (sometimes)

= Optimum test cases can be generated
without executing the application

= Combining dynamic and static approaches
can optimize fuzzing

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

= Fuzzing is easy, until you really try it

= Code coverage is a tool that can be used
to try to measure and improve fuzzing

= You won't find any bugs in code you
haven't tested

= |[ncreasing code coverage can be difficult
and time consuming but new tools are
coming to make this easier

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com -

References

= http://en.wikipedia.org/wiki/Fuzz testing

= Make My Day: Just Run A Web Scanner, Toshinari Kureha, BH-EU-07
= How Smart is Intelligent Fuzzing - or - How Stupid is Dumb Fuzzing, Charlie

Miller, DEFCON 2007

= Robustness Testing Code Coverage Analysis, Teno Rontti, Masters Thesis

= How to Misuse Code Coverage, Brian Marick, http://www.testing.com/

writings/coverage.pdf

= ProxyFuzz: http://theartoffuzzing.com/joomla/index.php?
option=com_content&task=view&id=21<emid=40

= STP: http://theory.stanford.edu/~vganesh/stp.html

= SPIKE: http://www.immunitysec.com/downloads/SPIKE2.9.tgz

= |cov: http://ltp.sourceforge.net/coverage/lcov.php
= GPF and EFS: http://www.vdalabs.com/tools/efs_gpf.html

© 2005, Independent Security Evaluators
wwWw.securityevaluators.com

lYs|

http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Fuzz_testing
http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://www.testing.com/writings/coverage.pdf
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theartoffuzzing.com/joomla/index.php?option=com_content&task=view&id=21&Itemid=40
http://theory.stanford.edu/~vganesh/stp.html
http://theory.stanford.edu/~vganesh/stp.html
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
http://ltp.sourceforge.net/coverage/lcov.php
http://ltp.sourceforge.net/coverage/lcov.php
http://www.vdalabs.com/tools/efs_gpf.html
http://www.vdalabs.com/tools/efs_gpf.html

= Please contact me at:
cmiller@securityevaluators.com

© 2005, Independent Security Evaluators <[-
wwWw.securityevaluators.com r

mailto:cmiller@securityevaulators.com
mailto:cmiller@securityevaulators.com

