i

The following paper was originally published in the
Proceedings of the Fifth USENIX UNIX Security Symposium
Salt Lake City, Utah, June 1995.

Using the Domain Name System for System Break-ins

Steven M. Bellovin
AT&T Bell Laboratories

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Using the Domain Name System for System Break-ins

Steven M. Bellovin
smbOresearch.att.com

ATET Bell Laboratories

Abstract

The DARPA Internet uses the Domain Name Sys-
tem (DNS), a distributed database, to map host
names to network addresses, and vice-versa. Using
a vulnerability first noticed by P.V. Mockapetris, we
demonstrate how the DNS can be abused to sub-
vert system security. We also show what tools are
useful to the attacker. Possible defenses against this
attack, including one implemented by Berkeley in re-
sponse to our reports of this problem, are discussed,
and the limitations on their applicability are demon-
strated.

This paper was written in 1990, and was withheld
from publication by the author. The body of the paper
1s unchanged, even to the extreme of giving the size
of the Internet as 200,000 hosts. An epilogue has
been added that discusses why it was held back, and
why it is now being released.

1 Introduction

In an earlier paper [Bel89], we discussed a number of
security problems with the TCP/IP protocol suite.
Many of them turned on the ability of an intruder to
spoof the IP address of a trusted machine. In real-
ity, though, hosts extend trust to other hosts based
on their names, not their addresses; an attacker who
can spoof a host’s name can ignore the more diffi-
cult problem of faking its IP address. Some attacks
along just these lines were mentioned in the earlier
paper. In response to it, P.V. Mockapetris disclosed
to us a more devastating attack based on the Domain
Name System (DNS) [Moc87b, Moc87a]. Herein, we
utilize his observations to invade selected machines,
and demonstrate which other tools aided the attack.

Section 2 provides a brief overview of the DNS.
Section 3 provides the details of some actual attacks.
The names and IP addresses of the target hosts have
been changed to protect the innocent. Section 4 dis-
cusses defenses, and shows why most of them are
limited in their scope. We conclude byproviding

recommendations to software developers and system
administrators.

Throughout this paper, we focus on the problem
as 1t applies to Berkeley’s remote login and remote
shell services. We mention these specifically because
they are ubiquitous, and the source code 1s read-
ily available. Almost certainly, any other network
services that rely on host names for authentication
would be vulnerable. This probably includes vari-
ous implementations of remote or networked file sys-
tems.

2 The Domain Name System

The DNS is a distributed data base used to map
host names to TP (network layer) addresses, and
The name space is divided into a se-
ries of zones based on syntactic separators (periods)
in domain names. One or more servers contain the
authoritative data for each zone. Secondary author-
itative servers periodically poll the primary servers
for their zones; if the data has changed, they initiate
zone transfer operations to refresh their databases.
At any level, a server may delegate the authority
for a subdomain to a different server. Thus, if there
1s a server for a top-level domain com, it may itself
contain the information for companies small.com
and smaller.com, but delegate the responsibility for
monolith.comto one or more of that company’s ma-
chines. (In fact, servers for a domain need not, and
often will not, reside within that domain.)

In general, hosts that use the DNS maintain lo-
cal caches of the resource records returned. All re-
source records contain a Time-to-Live field set by
the creator; at the end of that period, the cached
record must be discarded, and an authoritative
server queried anew.

Let us consider, as an example, the information for
zone small.com, as shown in Figure 1. The server
contains a number of resource records.! Periods at

vice-versa.

I There are many other DNS records than those described
here. We are mentioning only those that provide information
necessary to understand the subsequent discussions.

$0RIGIN small.com

small.com. IN SOA

IN NS

IN NS
server IN A

IN HINFO
boss IN A

IN HINFO
wsl IN A

IN HINFO
ws2 IN A

IN HINFO

; Define a subdomain sales.small.com

sales IN NS
IN NS

droid.sales.small.com IN A
IN A

server.small.com. ghu.wsl.small.com. (

901110001 ; Serial
3600 ; Refresh
600 ; Retry
3600000 ; Expire
86400) ; Minimum Time-to-Live
server
server.tiny.com.
222.33.44.1
Smallic/100 Smalllx
222.33.44.2
Smallic/50 Smalllx
222.33.44.3
Smallic/40 Smalllx
222.33.44.4

Smallic/40 Smalllx

thinker.sales.small.com.
wsl

222.33.45.1

222.33.44.5

Figure 1: The zone small.com.

the end of some names indicate that they are abso-
lute, and not relative to the $0RIGIN field. An omit-
ted name field from a record indicates that the name
of the previous record should be used. And the ubig-
uitous IN field indicates that the records belong to
the Internet domain; the DNS is capable of storing
information about many different types of networks.

The SOA record defines the Start of Authority for
the zone. Primarily a “glue record”, it contains two
fields of interest to us here: the machine that is the
definitive source of the information in the zone, and
the electronic mail address (in a variant form) of the
person responsible. Note, incidentally, that the SOA
record also contains the minimum expiration time
for any resource records within the zone.

The NS records
servers for the

define the authoritative name
Similar NS
records must be in the server for the com domain so
that inquiries may be directed to the proper place.
In addition, the parent domain must contain 4 (ad-
dress) records for all servers for its subdomains. This
is illustrated by the records for sales.small.com, a
subdomain under separate administration.

domain small.com.

A host with more than one network interface will
normally have multiple A records associated with it.
Such hosts are often, but not always, gateways be-

tween the different networks.

Four hosts are defined within the domain, server,
boss, wsl, and ws2. According to the HINFO record,
all of the hosts appear to be Small, Inc.’s own com-
puters and operating system.

A DNS query may request a record of a particular
type—say, an A record—or it may ask for all records
pertaining to a given name. A response may con-
tain just the answers desired, a pointer to the proper
server if the information is not contained within this
zone, or an error indication if the record requested
does not exist.

If appropriate, an answer may also contain Ad-
ditional Information . Suppose a query were sent
to the small.com server asking for the address of
critter.sales.small.com. The reply would con-
tain not just the NS record for sales.small.com,
but also the A record for that server.

2.1 Inverse Mapping Domains

The records described
queries, where the client has a machine name and
wishes to look up the IP address. However, ordi-
nary DBMS-style inverse queries, to map addresses
into names, do not work.

above suffice for forward

The reason why is a bit subtle. Certainly, one
could ask any given server which machine corre-
sponded to the address 222.33.45.100. Unfortu-
nately, that server would be unlikely to know the
answer. Nor, without more information, could the
client know which server to query. The DNS is a
distributed database, with boundaries delimited by
host name syntax. IP addresses contain no clues to
this organization.

Instead, inverse mappings are implemented by a
separate, parallel tree, keyed by IP address. To
mimic the structure of IP addresses, and hence the
fashion in which they are assigned to administrators,
the individual bytes of the address are reversed. A
standard suffix is appended to avoid name collisions
with forward mappings. Thus, the address-to-name
mapping for host ws1, which has an TP address of
222.33.44.3, would be handled by a server for zone
44 .33.222.in-addr.arpa. Its database, with glue
records omitted, looks like this:

$ORIGIN 44.33.222.in-addr.arpa

1 IN PTR server.small.com.
2 IN PTR boss.small.com.

3 IN PTR wsl.small.com.

4 IN PTR ws2.small.com.

Each record contains only a pointer to the forward
mapping record. Generally, the inverse mapping tree
will reside on the same machine as the correspond-
ing forward mapping tree, but this is not a require-
ment. Hosts with more than one address will have
PTR records in more than one inverse mapping tree.

3 Attack!

Kids! Do not try this at home! This stunt
was carried out by trained professionals,
who—apart from knowing what they were
doing—had the permission of the relevant
system administrators!

Our threat scenario assumes that the attacker has
complete control of a machine containing legitimate
primary servers for a DNS zone, including the asso-
ciated inverse mapping tree. That is, he or she can
make whatever changes are desired to the delegated
portions of the name tree, and such changes will be
accepted as correct by other machines, subject only
to the usual expiration dates. We also assume the
ability to control any TCP port numbers on that ma-
chine, including those that Berkeley’s versions of the
UNIX system regard as privileged. The attacker may
be either a renegade system administrator or some-
one who has successfully subverted a DNS server ma-

chine. History demonstrates that both possibilities
are real.

The attacker’s goal is to find hosts that trust other
hosts using their names, and to learn the names
of some of those trusted partners. While random
patterns of trust can and do exist, a more fruit-
ful approach is to look for two common patterns.
First, in a cluster of time-sharing machines, each
of the machines is likely to extend blanket trust to
the others. Even if that does not apply to the gen-
eral user population, it probably does apply to the
systems programming and operational staffs. Sec-
ond, the attacker can look for file servers and their
workstations. The file servers sometimes trust their
clients, serving as a source of extra CPU cycles. Fur-
thermore, if the clients are “dataless”, they will fre-
quently trust an administrative machine to permit
software maintenance.

In the following examples, we will assume that the
target organization has the following machines:

IP Address Type
bullseye.softy.org 192.193.194.1 file server
ringer.softy.org 192.193.194.64 workstation
groundzero.softy.org 192.193.194.65 workstation

Name

All are running some derivative of 4.2BsD or 4.3BSD,
such as SunOS, and all trust each other via
/etc/hosts.equiv files.

The attacker, whom we shall dub Cuckoo in honor
of Cliff Stoll’s book [Sto89], is coming from machine
cracker.ritts.org, 150.151.152.153.

The essence of the basic attack relies on the na-
ture of the address-to-name mapping. As noted
above, this mapping uses an independent DNS
tree. Assume that the inverse mapping record
for 150.151.152.153 is changed from the correct
cracker.ritts.org to ringer.softy.org. When
the attacker attempts to rlogin to bullseye, it will
try to validate the name —mnot the IP address—
of the calling machine. It does this by call-
ing gethostbyaddr() and passing it the address
150.151.152.153. In a DNS environment, that call
translates to a name server query for the record asso-
ciated with 1563.152.151.150.in-addr.arpa. This
will, of course, retrieve the PTR record shown above.
Thus, bullseye believes that its friend and neigh-
bor ringer is trying to connect. Thus, the call is
accepted, and the attack has succeeded.

Note the fundamental flaw we have exploited
here. There is no forced linkage between the
two DNS trees owned by Cuckoo, ritts.org
and 152.151.150.in-addr.arpa, even though they
should contain complementary data. Thus, the lat-
ter tree can contain entries pointing to hosts belong-
ing to Softies, Inc.

$ snmpnetstat bullseye.softy.org public
Active Internet Connections
Proto Recv-] Send-Q Local Address

tcp 0 0 bullseye.softy.org.login
tcp 0 0 bullseye.softy.org.login
tcp 0 0 bullseye.softy.org.1023
tcp 0 0 bullseye.softy.org.3593

Foreign Address (state)
bullseye.softy.org.1023 ESTAB
ringer.softy.org.1020 ESTAB
bullseye.softy.org.login ESTAB
other.host.com.411 ESTAB

Figure 2: Connection patterns via SNMP.

3.1 Filling in the Blanks

In order to mount the attack described above,
Cuckoo needs to know three things: a target host
name, a user name to impersonate, and a ma-
chine trusted by the target host. There are many
approaches possible, all using a variety of stan-
dard tools. The following sequence, which we ac-
tually used in our first demonstration attack, 1s
illustrative.? We will start by assuming we know
the name of the target machine, perhaps from a
mail message or news article. Next, we use SNMP
[CDF89] to examine its TCP connection tables (Fig-
ure 2). That is, apart from the miscellaneous con-
nection to port 411 on some other host, the other
TCP activity represents uses of rlogin. One con-
nection is from ringer; the others represent the two
endpoints of an rlogin session from bullseye to it-
self. This is an odd circumstance, and potentially
quite revealing. The finger command tells us more
(Figure 3).

Two entries indicate remote logins. On ttyp4,
user random is connected from ringer. And on
ttypb, bingo is connected from bullseye itself, in a
loopback connection. It seems likely that this repre-
sents useri utilizing a different login, rather than
random doing so; such a connection from random
would more likely have originated from ringer. So
we have a possible .rhosts file for bingo authorizing
a local user user1 when coming from host bullseye.
We can also try for random coming from ringer; a
quick check with finger shows a user of the same
name logged in there.

The remaining steps are trivial. We modify the
PTR record for cracker appropriately, create local
login names userl and random for ourselves, and
use them to attempt an rlogin to the target ma-
chine. The attack succeeded on the second try; it
turned out that random’s connection was not preau-
thorized.

Actually, the procedure outlined above got a bit

2The output you are about to see is real. Only the names
and IP addresses have been changed, to protect the innocent.

tedious, so we developed some extra tools to help.
First, we installed several instances of the pseudo-
network driver [Bel90], not because we needed its
facilities but because it gave us an easy way to asso-
ciate several new IP address with our machine with-
out installing any extra hardware. This let us at-
tempt impersonations of several machines at once.
Slight modifications to the global routing tables,
courtesy of routed, were needed to route packets
back to us. We also modified rlogin to let us spec-
ify the local host address and the local user name,
thus avoiding the need for extra /etc/passwd en-
tries. Our attacks became this simple:

xrlogin bullseye.softy.org -1 bingo \
-L userl -x 150.151.252.153

The appropriate PTR records were all created to-
gether, of course.

3.2 Other Approaches

Some might object that the penetration described
above relied on SNMP, a facility not often found on
hosts, and on finger, a service which sometimes
does not give the name of the remote hosts. For-
tunately for the attacker, there are other ways to
gather the necessary data.

One useful tool is electronic mail. Suppose you
wish to target someone who sent you (or a mailing
list) some electronic mail. These days, mail headers
are often modified to indicate that the sender’s ma-
chine is some gateway, perhaps a file server. But the
Received: or Message-Id: lines indicate the actual
source of the mail. Often, that user will be able to
rlogin to the apparent sending machine—i.e.; the
file server—from the actual sending machine, typi-
cally a workstation.

Another useful tool is the DNS itself; it contains a
wealth of information. The SOA record contains the
address of a privileged user and a machine containing
data administered by that person. That alone is a
useful pair to attack. If that fails, assume again that
we know a user name and a machine name. The DNS

$ finger Qbullseye.softy.org
[bullseye.softy.org]l

Login Name TTY Idle When Where

userl User One co Fri 13:18

userl User One PO 1:48 Mon 13:15 unix:0.0

userl User One pl 3d Mon 13:15 unix:0.0

userl User One p2 Mon 13:15 unix:0.0

userl User One p3 1:56 Wed 12:45 unix:0.0

random Amber Random p4 3d Wed 15:51 ringer.softy.org
bingo Bingo Scores pb 1:56 Wed 12:46 bullseye.softy.org
userl User One pé 12 Fri 12:15 unix:0.0

Figure 3: Learning from the finger command.

will tell us the TP address of that machine. Gener-
ally, it will also permit a zone transfer to list the
other machines on that network. Thus, if we only
know one machine name, groundzero.softy.org,
but do not know any other machines in that or-
ganization, we can quickly learn that groundzero
1s 192.193.194.65. Next, we try a zone transfer
request for 194.193.192.in-addr.arpa, using any
of a number of standard tools. (If the zone trans-
fer is rejected, we only need to issue 254 individual
queries to map a Class C network.) That gives us
the names of other machines on the same network.
If we’re lucky, the DNS entries for those machines
will include HINFO lines; the model numbers provide
powerful clues as to which machines are file servers
and which are workstations. (SNMP, if available
on the targets, can also provide model numbers.)
Further clues can be sometimes be found by use of
finger (which machines have multiple users logged
in?), SMTP (does the machine run a mail server?),
anonymous FTP (workstations rarely offer the ser-
vice; servers sometimes do), and Sun’s rpcinfo
(what services are running?). It may not even mat-
ter very much—some organizations use the same
/etc/hosts.equiv file on all of their machines, just
to simplify system administration.

4 Attempted Defenses

A variety of defenses have been tried or contem-
plated; few are generally successful. The first
was developed by Berkeley when we reported this
problem some time ago. It consists of modifica-
tions to rlogind and rshd to validate the inverse-
mapping tree by looking at the corresponding node
on the forward-mapping tree. That is, if the
gethostbyaddr() call on address 150.151.152.153
returns the name bullseye.softy.org, the server
will issue a gethostbyname() call on that name, and

the list of addresses returned is matched against
150.151.152.153. If the match fails, a imperson-
ation attempt is flagged. In the general case, this
defense is easily countered. To see how, let us ana-
lyze the transactions in terms of the DNS.

The gethostbyaddr() call is, as noted, imple-
mented by a DNS request for a PTR record. The
server that supplies this PTR record is under
Cuckoo’s control, and may return false information.
The gethostbyname() call requests & records ulti-
mately from the server for softy.org, which is not
controlled by the attacker. However, in reality the
query does not go immediately to that server; rather,
it goes to the local machine’s name server. And
that server has a cache which may be poisoned by
Cuckoo. Specifically, the DNS message containing
the PTR record may contain a bogus A record in its
Additional Information field. The information in
this record will be returned on any gethostbyname()
call, along with other (presumably legitimate) A
records. The name server for 4.3BSD does not nor-
mally include any A records when sending out PTR
responses, but the modification to make it do so 1is
trivial. The results of the change are shown in Fig-
ure 4, using Mockapetris’s dig program.

Note the very short time-to-live fields; the at-
tacker does not want these anomalous records stay-
ing around where they might be observed. This is
particularly necessary for the A record; it might be
embarrassing if it were returned to a legitimate user
seeking the address of bullseye.

It has been suggested to us that additional in-
formation fields be scrutinized more carefully before
acceptance. In the above example, there is little rea-
son to include an A record with a PTR; would it help if
the name server rejected 1t? Again, the answer is no;
there are other, apparently legitimate, ways to intro-
duce bogus A records. For example, one can often
persuade a host to do a lookup for a hostname in a

$ dig -x 150.151.152.153 @server.ritts.org

; <<>> DiG 2.0 <<>> -x @server.ritts.org

;35 —>>HEADER<<- opcode: QUERY , status: NOERROR, id: 10
;; flags: qr aa rd ra ; Ques: 1, Ans: 1, Auth: 0, Addit: 2

;; QUESTIONS:
HH 153.252.151.150. in-addr.arpa, type

;3 ANSWERS:
153.252.151.150. in-addr. arpa. 30 PTR

;; ADDITIONAL RECORDS:
bullseye.softy.org. 15 A

;35 Sent 1 pkts, answer found in time: 70 msec
;3 FROM: cracker to SERVER: server.ritts.org

;3 WHEN: Tue Oct 30 13:20:54 1990

ANY, class = IN

bullseye.softy.org.

150.151.252.153

150.151.152.154

Figure 4: Returning an addtional & record when a PTR record has been requested.

subdomain of ritts.org, say foo.bar.ritts.org.
Such a query will (properly) be answered by the
server for domain ritts.org, which is controlled by
the attacker. The response will contain a list of the
name servers for domain bar.ritts.org. Those NS
records are, of necessity, accompanied by the corre-
sponding A records. Nothing would prevent the in-
clusion of bullseye.softy.organd the correspond-
ing fraudulent A record in this list.

Attempts to poison the cache of a primary or sec-
ondary server for a domain do not work. The stan-
dard name servers will reject updates to zones for
which they are authoritative. Thus, the attacker
cannot insert bogus A records, so the cross-check will
detect the attack. This prohibition is only reason-
able, and not just for security reasons; an authori-
tative server by definition possesses all possible data
for its zone. Attempts to update the zone remotely
are at best naive.

In some environments, this provides a reasonably
strong defense. Most rlogin and rsh requests do
come from the local cluster of machines, and it 1s
precisely for these that the local server is authorita-
tive. Nevertheless, care should be taken. Caching-
only servers are not immune, as they possess no au-
thoritative data of their own. Nor are authorita-
tive servers when fielding requests from outside their
zone; 1f a host trusts another host not named in a
local zone, its name server cannot protect it.

The target 1s also in a somewhat stronger posi-
tion if it is a secondary server for the inverse map-
ping domain of the attacker. In that case, the PTR
record will be retrieved from an unmodified name

daemon; hence, the attacker will not be able to add
the Additional Information field. This, too, can be
countered. In a variant analagous to one discussed
earlier, the attacker can create an NS record for the
inverse domain naming the impersonated machine
as a secondary server; in such cases, the fraudulent
A record will be sent along on zone transfer requests.

Another layer of protection can be provided if
the target host uses a local mapping table before
consulting the DNS. For example, some sites use
Sun’s interface between Network Information Ser-
vice (NIS, nee YP) and the DNS. On such machines,
the DNS is queried only if NIS does not have the
answer. Thus, the inverse lookup will retrieve the
bogus PTR record, since the address used is not in
the local host tables. But the forward lookup—the
gethostbyname() call—will be satisfied by NIS with-
out resort to the DNS, and hence without retrieving
the poisoned A record.

It must be underscored that this defense does not
work at all if the attacker finds a target user com-
ing in from a host not listed in the NIS database.
Conceptually, 1t 18 analogous to the situation of au-
thoritative DNS servers: the target host possesses
incorruptible? local information.

3In SunOS 4.1 and later, the cross-check is implemented
in the gethostbyaddr() subroutine; thus, all utilities reap the
benefits of increased security. However, the message gener-
ated in case of a failure does not indicate a possible secu-
rity problem. Judging from comments on assorted mailing
lists, this possibility is not well known. Furthermore, there
are reports that a bug in some versions causes frequent er-
roneous generation of this message, thus lulling even alert
administrators.

4Security holes in NIS are beyond the scope of this paper.

5 Hardening DNS Servers

It would be very useful, when tracking these and
other problems, if DNS server cache entries were
tagged with their source. Thus, bogus A records
could be tracked back. Note that this is not just
a security issue; periodically, assorted newsgroups
and mailing lists discuss why a DNS zone has been
corrupted, and how to purge the offending entries.
The ability to trace the offending records to their
source would help tremendously.

Preventing cache contamination is probably not
feasible. If a server is not authoritative for a zone, it
has no way of knowing whether or not Additional
Information records may be trusted. It does no
good to add authentication to DNS responses; the
attacks described herein all come from the legiti-
mate (albeit untrustworthy) sources. In some im-
plementations, 1t might be feasible to restrict the
scope of the cache. Perhaps Additional Information
records should be used only when resolving partic-
ular queries, and then discarded. That is harder
to do for NS records, but the associated A records
could be bound to the name server definitions and
not used for other purposes. Obviously, any tinker-
ing along these lines would result in a smaller, less
useful, cache. And that in turn would lead to more
DNS queries, possibly an unacceptable price.

6 Conclusions and Recommendations

As we have stated before [Bel89], reliance on host
addresses or host names for authentication is funda-
mentally flawed. The only real security in an inter-
networking environment is cryptographic. The Ker-
beros system [Bry88, KN93, MNSS87, SNS88, NT94]
is probably the best choice today; though flawed
in places [BM91], it is far better than the current
scheme.

If it is not possible to use cryptographic authenti-
cation, installation of Berkeley’s fix 18 mandatory.
Without it, none of the palliative strategies de-
scribed below do any good.

A first cut at protection, in such cases, would be to
restrict name-based authentication to hosts blessed,
as 1t were, by the system administrator. Though
there are other obvious security benefits, the ad-
vantage here is that the set of trusted hosts would
be limited to those for which the local machine has
authoritative name information. Berkeley’s latest
versions of rlogind and rshd support this by per-
mitting the administrator to disable use of .rhosts
files.

If this is not feasible, an alternative is to have

the local name server act as a secondary server for
important neighboring zones, and thus possess au-
thoritative forward-mapping data. In many environ-
ments, most remote login requests will come from a
very few other organizations; one need not download
all mapping information for the entire network. Fur-
thermore, with current implementations, such sec-
ondary servers need not be “official”. That is, if
depta.company.com wished to be a secondary server
for the deptb.company.com domain, it is not neces-
sary for the administrator of the company.com zone
to create any new NS records. In most cases, the zone
transfer will succeed, and depta’s domain server will
possess correct data.®

A corollary to this is that caching-only servers are
Bad. They possess no authoritative data of any
sort, and are very susceptible to cache poisoning.
If DNS' attacks are possible, no host should rely on
any caching-only server for information. All time-
sharing machines within an organization, and all file
servers, should possess definitive mapping informa-
tion for the hosts within the organization. This may
be accomplished via NIS, DNS secondary servers,
or other means. This in turn implies that huge
domains—those encompassing entire campuses, for
example—are probably a bad idea, as far too many
machines would have to possess far too much data.

6.1 Logging and Auditing

As always, proper logging and auditing can be sig-
nificant aids in detecting DNS attacks. For example,
the anti-spoofing code added to rlogind and rshd
should inform the system administrator of such at-
tempts. The versions released by Berkeley inform
the attacker alone. Similarly, it would be useful if
DNS servers logged attempts to update authorita-
tive zones. This is not a trivial task, as there are a
number of contexts in which it is legitimate to re-
ceive locally-known data in Additional Information
records, but it might be feasible. As a rule of thumb,
one should log any responses that not only refer to
a local zone, but also either attempt to add new
records, or to add contradictory information to ex-
isting records other than time-to-live. There will be
noise in the log even so, especially if some records
have been changed but stale copies still exist else-
where.

A second useful log would be of all connection at-
tempts, successful or not, to rlogind or rshd. These

5Do note, though, that some organizations block zone
transfers from unapproved sites. In any event, politeness
would seem to dictate that deptb’s administrator be contacted
first.

should include the remote host name, the IP address
(of course), and the local and remote user names.
This file may be audited offline to check for mis-
matches between the host name and address. Ob-
viously, such checks require great care, lest they be
spoofed by the same attack.

A more difficult detection measure would involve
comparisons of the forward-mapping data against
the inverse mapping data for the zone. Presumably,
a security organization could attempt random zone
transfers from various authorized servers, and audit
the data retrieved. It is unclear if such matches are
actually useful. Apart from the obvious—a clever at-
tacker will not leave bogus resource records around
when not using them—inverse mapping domains are
notorious for their poor quality. (To be sure, find-
ing such errors might justify the effort, even apart
from security considerations.) Additionally, unusual
situations are often created deliberately to deal with
multi-homed hosts, or to create pseudo-hosts for spe-
cific services. Detecting attacks amidst this sort of
noise is quite hard.

6.2 Giving Away Information

The astute reader will have noticed that the at-
tack scenarios we have presented relied on gather-
ing trust data first. Put another way, we abused
assorted standard services to learn which pairs of
hosts were worth attacking. As we have noted ear-
lier [Bel89], any sort of information utility—finger,
SNMP, etc.—provides a wealth of information to an
attacker. System administrators should ask them-
selves if the benefits of these utilities outweigh the
risks.

6.3 Should the DNS be Abandoned?

In response to reports of these problems, some indi-
viduals have suggested that the DNS be abandoned,
in favor of a return to static host tables. We do not
agree with this suggestion, for several reasons.

First and foremost, the problem here is not the
DNS,; it is inadequate methods of host authentica-
tion. If strong (i.e., cryptographic) mechanisms were
used, people playing games with inverse mapping
records would be notable solely for their nuisance
value. At most, some log files would need to be en-
hanced to record TP addresses as well as host names.

Nor would abandoning the DNS solve the problem
of attacks that actually mimic the IP address of a
trusted host, rather than simply its name. Such at-
tacks are somewhat harder, but the techniques have
been published for some time. (See, for example,

[Mor85].) Trying to fix the name table problem in-
stead of tackling the real issue is treating the symp-
toms, not curing a disease.

Second, it is by no means clear that the DNS is
the real source of the problem. Rather, the problem
arises because the information necessary to compile
any sort of host-to-address mapping scheme is of ne-
cessity distributed in nature. The administrators
involved are located around the world. None of the
usual mechanisms for transmitting updates to a cen-
tral site (electronic mail, telephone calls, or even
conventional paper mail) carry any strong authen-
tication; a table compiler who blithely acts on all
update requests can install poisoned records almost
as easily as can a DNS administrator.

Finally, abandoning the DNS would leave un-
solved the problem it was originally meant to tackle:
the sheer size of the host table. By best estimates
the Internet is comprised of more than 200,000 ma-
chines; neither the update frequency nor the timely
distribution of new tables can be handled by other
mechanisms.

7 Acknowledgements

We wish to thank the anonymous system adminis-
trators who consented to have their system attacked.
In addition, they graciously installed test domains,
new versions of rlogin and rshd, and other files we
requested to either facilitate or defeat new attempts
at penetration.

8 Epilogue

As noted, this paper has been withheld by the author
for over four years. Holding it back was not an easy
decision, nor was eventual decision to release it. For
both decistons, we cite the external world; as it has
changed, so has the outcome.

The paper was held back—not suppressed; no ex-
ternal agency applied any pressure, though there
were certainly others who were happy it was not
published at the time—because it described a seri-
ous vulnerability for which there was no feasible fix.
The only choice would have been to give up entirely
on name-based authentication, a choice the industry
was not able to make in 1990.

Attitudes and technology have changed since then.
For one thing, many sites already use firewalls to
protect against such attack; if an attacker cannot
open an rsh connection, he or she cannot claim
a false origin for it. The recent successful se-

quence number guessing attack® has probably sealed
the doom of name-based authentication over the In-
ternet.

Cryptography is also more accepted. Apart from
its direct use for authenticating connections, there
are now proposals for cryptographic authentication
of the DNS itself [EK95]. That would be a complete
defense against the cache poisoning attacks described
here; DNS responses would be self-authenticating,
and forged responses would be detected and dropped.

There has also been a proposal for how name
servers can defend against cache contamination.
The concept s stmple: only use Additional Infor-
mation resource records in the context in which they
were returned. That 1s, an 4 record that accompanied
an MX record would be consulted only when sending
mail to that site. It would not be used when a general
address lookup was done, or to confirm the names re-
cewed via PTR records. This and other enhancements
are described further by Vizie [Viz95].

Arquably, this paper should have been published
when written. “Death of the Net predicted; film
at 11”7 1s an old refrain, and the Net has now sur-
vived password sniffers and sequence number attacks.
More to the point, if more people had known of the
attack, perhaps the solution described above would
have been found sooner.

Finally, the secrecy may have been in vain. Apart
from reports that this exact technique was used by
hackers many years ago—and the reports are quite
reliable—the paper leaked anyway. We have seen it
on at least one Web server, and follow-up work by
Schuba has been available for quite some time [SS93].

References
[Bel89] Steven M. Bellovin. Security problems
in the TCP/IP protocol suite. Com-
puter Communications Review, 19(2):32-

48, April 1989.

[Bel90] Steven M. Bellovin. Pseudo-network
drivers and virtual networks. In USENTX
Conference Proceedings, pages 229-244,
Washington, D.C., January 22-26, 1990.

[BM91] Steven M. Bellovin and Michael Mer-

ritt. Limitations of the Kerberos authen-
tication system. In USENIX Conference
Proceedings, pages 253-267, Dallas, TX,
Winter 1991.

SCERT Advisory CA-95:01, January 23, 1995

[Bry88]

[CDF8Y]

[EK95]

[KN93]

[MNSS87]

[Moc87a]

[Moc87b]

[Mor85]

[NT94]

[SNS88]

B. Bryant. Designing an authentication
system: A dialogue in four scenes, Febru-

ary 8, 1988. Draft.

J. Case, C. Davin, and M. Fedor. Simple
network management protocol SNMP.
Technical Report RFC 1098, Internet En-
gineering Task Force, April 1989. Obso-
letes RFC1067; Updated by RFC1157.

Donald E. Eastlake, 3rd and Charles W.
Kaufman. Domain name system protocol
security extensions. Internet draft; work
in progress, January 2, 1995.

J. Kohl and B. Neuman. The ker-
beros network authentication service
(V5). Request for Comments (Experi-

mental) RFC 1510, Internet Engineering
Task Force, Sep 1993.

S. P. Miller, B. C. Neuman, J. I. Schiller,
and J. H. Saltzer. Kerberos authentica-
tion and authorization system. In Project
Athena Technical Plan. MIT, December
1987. Section E.2.1.

P. Mockapetris. Domain names - con-
cepts and facilities. Request for Com-
ments (Standard) RFC 1034, Inter-
net Engineering Task Force, November
1987. Obsoletes RFC0973; Updated by
RFC1101.

P. Mockapetris. Domain names - imple-
mentation and specification. Request for
Comments (Standard) RFC 1035, Inter-
net Engineering Task Force, November
1987. Obsoletes RFC0973; Updated by
RFC1348.

Robert T. Morris. A weakness in the
4.2BSD Unix TCP/IP software. Com-
puting Science Technical Report 117,
AT&T Bell Laboratories, Murray Hill,
NJ, February 1985.

B. Clifford Neuman and Theodore Ts’o.
Kerberos: An authentication service for
computer networks. [EEE Communica-

tions, 32(9):33-38, September 1994.

Jennifer Steiner, B. Clifford Neuman,
and Jeffrey 1. Schiller. Kerberos: An au-
thentication service for open network sys-
tems. In Proc. Winter USENIX Confer-
ence, pages 191-202, Dallas, TX, 1988.

[$593]

[Sto89)]

[Vix95]

Christoph L. Schuba and Eugene H.
Spafford. Addressing weaknesses in the
domain name system protocol. Master’s
thesis, Purdue University, 1993. Depart-
ment of Computer Sciences.

Chiff Stoll. The Cuckoo’s Eqg: Tracking a
Spy Through the Maze of Computer Es-
pionage. Doubleday, New York, 1989.

Paul Vixie. DNS and BIND security is-
sues. In Proceedings of the Fifth Usenix
UNIX Security Symposium, Salt Lake
City, UT, 1995. To appear.

