
Tradeoffs in Transactional Memory Virtualization

JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare,
Hassan Chafi, Brian D. Carlstrom, Christos Kozyrakis and Kunle Olukotun

Computer Systems Laboratory
Stanford University

{jwchung, caominh, austenmc, travissk, hchafi, bdc, kozyraki, kunle}@stanford.edu

ABSTRACT
For transactional memory (TM) to achieve widespread ac-
ceptance, transactions should not be limited to the physical
resources of any specific hardware implementation. TM sys-
tems should guarantee correct execution even when trans-
actions exceed scheduling quanta, overflow the capacity of
hardware caches and physical memory, or include more inde-
pendent nesting levels than what is supported in hardware.
Existing proposals for TM virtualization are either incom-
plete or rely on complex hardware implementations, which
are an overkill if virtualization is invoked infrequently in the
common case.

We present eXtended Transactional Memory (XTM), the
first TM virtualization system that virtualizes all aspects
of transactional execution (time, space, and nesting depth).
XTM is implemented in software using virtual memory sup-
port. It operates at page granularity, using private copies of
overflowed pages to buffer memory updates until the trans-
action commits and snapshots of pages to detect interfer-
ence between transactions. We also describe two enhance-
ments to XTM that use limited hardware support to ad-
dress key performance bottlenecks. We compare XTM to
hardware-based virtualization using both real applications
and synthetic microbenchmarks. We show that despite be-
ing software-based, XTM and its enhancements are compet-
itive with hardware-based alternatives. Overall, we demon-
strate that XTM provides a complete, flexible, and low-cost
mechanism for practical TM virtualization.

1. INTRODUCTION
As multi-core chips become ubiquitous, it is critical to

provide architectural support for practical parallel program-
ming. Transactional Memory (TM) simplifies concurrency
management by supporting parallel tasks (transactions) that
appear to execute atomically and in isolation [9]. By virtue
of speculation, TM allows programmers to achieve good par-
allel performance using easy-to-write, coarse-grain transac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’06October 21–25, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-451-0/06/0010 ...$5.00.

tions. Transactions also address other challenges of lock-
based code such as deadlock avoidance and failure isolation.

There are several proposed architectures that implement
TM using hardware caches for data versioning and coher-
ence protocols for conflict detection [17, 5, 2, 16]. Nev-
ertheless, for TM to become useful to programmers and
achieve widespread acceptance, it is important that transac-
tions are not limited to the physical resources of any specific
hardware implementation. TM systems should guarantee
correct execution even when transactions exceed schedul-
ing quanta, overflow the capacity of hardware caches and
physical memory, or include more independent nesting levels
than what the hardware supports. In other words, TM sys-
tems should transparently virtualize time, space, and nesting
depth. While recent application studies have shown that the
majority of transactions will be short-lived and will execute
quickly with reasonable hardware resources [2, 3], the infre-
quent long-lived transactions with large data sets must also
be handled correctly and transparently.

Existing TM proposals are incomplete with respect to vir-
tualization. None of them supports nesting depth virtu-
alization, and most do not allow context switches or pag-
ing within a transaction (TCC [5], LTM [2], LogTM [16]).
UTM [2] and VTM [18] provide time and space virtualiza-
tion but require complex hardware and firmware to manage
overflow data structures in memory and to facilitate safe
sharing among multiple processors. Since long-lived trans-
actions are not expected to be the common case [3], such a
complex and inflexible approach is not optimal.

This paper presents the first comprehensive study of TM
virtualization that covers all three virtualization aspects:
time, space, and nesting depth. We propose eXtended Trans-
actional Memory (XTM), a software-based system that builds
upon virtual memory to provide complete TM virtualiza-
tion without complex hardware. When a transaction exceeds
hardware resources, XTM evicts data to virtual memory at
the granularity of pages. XTM uses private copies of over-
flowed pages to buffer memory updates until the transaction
commits and snapshots to detect interference between trans-
actions. On interrupts, XTM first attempts to abort a young
transaction, swapping out transactional state only when un-
avoidable. We demonstrate that XTM allows transactions
to survive cache overflows, virtual memory paging, context
switches, thread migration, and extended nesting depths.
XTM can be implemented on top of any of the hardware
transactional memory architectures. The combination is a
hybrid TM system that provides the performance advantages

of a hardware implementation without resource limitations.
XTM supports transactional execution at page granular-

ity in the same manner that page-based DSM systems pro-
vide cache coherence at page granularity [24, 20]. Unlike
page-based DSM, XTM is a backup mechanism utilized only
in the uncommon case that hardware resources are exhausted.
Hence, the overheads of software-based virtualization can
be tolerated without a performance impact on the common
case behavior. Compared to hardware-based virtualization,
XTM provides flexibility of implementation and lower cost.

In the base design, XTM executes a transaction either
fully in hardware (no virtualization) or fully in software
through page-based virtual memory1. Conflicts for over-
flowed transactions are tracked at page granularity. If vir-
tualization is frequently invoked, these characteristics can
lead to large overheads for virtualized transactions. To re-
duce the performance impact, we also present two enhance-
ments to the base XTM system. XTM-g allows an over-
flowed transaction to store data both in hardware caches and
in virtual memory in order to reduce the overhead of cre-
ating private page copies. XTM-e allows conflict detection
at cache line granularity, even for overflowed data in virtual
memory, in order to reduce the frequency of rollbacks due
to false sharing. XTM-g and XTM-e require limited hard-
ware support, which is significantly simpler than the support
necessary for hardware-based virtualization [16, 2]. XTM-g
and XTM-e perform similar to hardware-based schemes like
VTM, even for the most demanding applications.

Overall, this paper describes and analyzes the major trade-
offs in virtualization for transactional memory. Its major
contributions are:

• We propose XTM, a software-based system that is the
first to virtualize time, space, and nesting depth for
transactional memory. XTM builds upon virtual mem-
ory and provides transactional execution at page gran-
ularity.

• We develop two enhancements to XTM that reduce the
overheads of page-based virtualization: XTM-g that
allows gradual overflow of data to virtual memory and
XTM-e that supports conflict detection at cache line
granularity.

• We provide the first quantitative evaluation of TM vir-
tualization schemes for a wide range of application sce-
narios. We demonstrate that XTM and its enhance-
ments can match the performance of hardware virtu-
alization schemes like VTM [18] or TM systems that
use serialization to handle resource limitation [5].

Overall, this work establishes that a software, page-based
approach provides an attractive solution for transparent TM
virtualization.

The rest of this paper is organized as follows. Section 2
reviews the requirements and design space for TM virtual-
ization. Section 3 summarizes existing hardware-based ap-
proaches. Section 4 describes the base XTM design, while
Section 5 presents the two enhanced XTM systems. Sec-
tions 6 and 7 present qualitative and quantitative compar-
isons between XTM and hardware virtualization schemes.
Finally, Section 8 presents related work, and Section 9 con-
cludes the paper.

1When one transaction overflows, non-overflowing transac-
tions continue executing in the hardware mode.

2. DESIGN CONSIDERATIONS FOR TM
VIRTUALIZATION

While the various TM architectures differ in the way they
operate, their hardware structure is similar. They all track
the transaction read-set and write-set in the private caches
(L1 and potentially L2) of the processor executing the trans-
action [17, 5, 2, 16]. Membership in either set is indicated
using additional state bits (metadata) associated with each
cache line. The data for the write-set are also stored in the
caches. Conflicts between concurrently executing transac-
tions are detected during coherence actions for cache lines
that belong to the write-set of one transaction and the read-
set of another. More recent proposals support nested trans-
actions that can rollback independently [13]. Tracking the
read-set and write-set for nested transactions requires an
additional tag per cache line to identify the nesting depth.
This hardware support for transactional memory is suffi-
cient if transactions do not exceed the capacity of caches,
never exceed the supported nesting depths, are not inter-
rupted, nor are migrated between processors. However, this
case cannot be guaranteed because of multiprogrammed op-
erating systems and the desire for software that is portable
across different hardware implementations.

TM virtualization allows transactions to survive cache
overflows, virtual memory paging, context switches, thread
migration, and extended nesting depths. Virtualization is
achieved by placing transactional state (read-sets and write-
sets) in virtual memory, which provides processor-independent,
location-independent, and practically infinite storage. De-
pending on the case, we may place some of the transactional
state in virtual memory (e.g., on a cache overflow) or all of
it (e.g., on a context switch).

A good virtualization scheme should satisfy the following
requirements with respect to correctness and performance.
First, it should be completely transparent to the user. Sec-
ond, it should preserve transactional atomicity and isola-
tion under all circumstances. Third, it should not affect
the performance of the common case when virtualization is
not needed. Finally, virtualized transactions should have
no significant effect on the performance of non-virtualized
transactions executing concurrently.

While the data for virtualized transactions are always
stored in virtual memory, there are several design options
to consider for the mechanisms that implement data ver-
sioning, conflict detection, and commit for virtualized trans-
actions2. Table 1 summarizes the advantages of the ma-
jor alternatives for each mechanism. The basic choices are
between a) hardware vs. software implementation (perfor-
mance vs. cost and flexibility), b) cache line vs. page gran-
ularity (storage efficiency and performance vs. complexity),
and c) eager vs. lazy operations (performance vs. isolation).
While it is difficult to quantitatively evaluate all reasonable
combinations of the above options, this paper aims at char-
acterizing the design space for TM virtualization sufficiently
so that major conclusions can be drawn.

If performance was the only optimization metric, it is
obvious that a virtualization system should be hardware-
based and should handle data at cache line granularity. We
discuss the proposed systems that follow this approach in

2There are similar design options for hardware support for
TM. However, this paper focuses exclusively on the design
tradeoffs in TM virtualization.

Data Versioning Conflict Detection Commit

Implementation
Hardware Low per access overhead Overlap with other work Low overhead
Software No ISA/HW changes needed Flexibility in conflict resolution Supports transactional I/O

Granularity
Cache line Low memory/BW requirements Less false sharing Low overhead

Page Reuse paging mechanisms No ISA/HW changes needed Amortize overheads better

Timing
Eager Fast commits Early detection N/A
Lazy Fast aborts Guaranteed forward progress N/A

Table 1: TM virtualization options for data versioning, conflict detection, and transaction commit. Each cell
summarizes the advantage of the corresponding implementation, granularity, or timing option.

Section 3. However, a virtualization system is by nature a
backup mechanism, only invoked when the hardware mech-
anisms are no longer sufficient. Recent studies show that
the majority of transactions will not exceed the hardware
capabilities [2, 3]. Chung et al. [3] showed that, when trans-
actions are used for non-blocking synchronization, 98% of
them require less than 22 Kbytes for read-set and write-set
buffering. About 95% of transactions include less than 5,000
instructions and are unlikely to be interrupted by external
events (context switches, interrupts, paging, etc.). When
transactions are used for speculative parallelization, they
showed that read- and write-sets get significantly larger, but
that the capacity of an L2 cache (e.g., 128 Kbytes) is rarely
exceeded. The rare occurrence of transactions requiring vir-
tualization implies that one’s choices in architecting a vir-
tualization system should better balance performance and
cost. We propose such systems in Sections 4 and 5.

3. HARDWARE-BASED VIRTUALIZATION
In this section, we review proposals for hardware-based

TM virtualization.
UTM: The UTM system was the first to recognize the

importance of virtualizing transactional memory [2]. It uses
cache line granularity, eager versioning, and conflict detec-
tion. UTM supports space and time virtualization, but does
not virtualize nesting depth.

Unlike most other proposals that start with a limited
hardware TM system and add virtualization support, UTM
starts with a virtualized system and provides some acceler-
ation through caching. UTM relies on the XSTATE data
structure in virtual memory, which is a log with informa-
tion on the read- and write-set of executing transactions.
Portions of the XSTATE can be cached by each proces-
sor for faster access. The UTM implementation is rather
idealized as it assumes all memory locations are appended
with a pointer to XSTATE. On cache misses, a processor
must always follow the pointer to detect conflicts. It also
relies on the availability of global virtual addresses, which
are not available in most popular architectures. Overall,
UTM is space inefficient and incurs significant overheads
even in some common cases (e.g., cache miss, no conflict).
The same paper introduces LTM, a more practical TM sys-
tem that allows transactions to overflow caches, but does
not allow them to survive virtual memory paging, context
switches, or migration [2].

VTM: VTM uses hardware and firmware mechanisms
to provide virtualization at cache line granularity with ea-
ger conflict detection and lazy versioning [18]. It supports
space and time virtualization, but does not virtualize nest-
ing depth. For each process, VTM defines the XADT data
structure in virtual memory. The XADT is organized as a
hash table and contains an overflow count, the overflowed

data (including metadata), and a bloom filter (called the
XF) that describes which addresses have overflowed to the
XADT. When a hardware cache overflows, VTM evicts a
cache line into the XADT and appropriately updates the
overflow count and the filter. On a context switch, VTM
evicts the entire read- and write-set for the transaction to
the XADT. Conflict detection and refills for evicted data oc-
cur on demand when transactions experience cache misses.
However, the XADT is only searched if the overflow count is
non-zero and the XF filter returns a hit. Commits or aborts
for data in the XADT happen lazily: VTM atomically sets
the status of transactions to committed or aborted and does
the transfer to memory or XADT clean up at a later point.

VTM provides fast execution when virtualization is not
needed by caching the overflow count and XF in an addi-
tional hardware cache. It also provides for fast execution
when virtualizing, as it uses hardware to evict cache lines
to the XADT and search the XADT for conflicts or refills.
Nevertheless, the performance advantages of VTM comes at
a significant complexity cost. First, the hardware must be
aware of the organization of the XADT, so the XADT must
be defined in the instruction set, similar to how the page
table organization is defined in ISAs if hardware TLB refills
are desired. Second, in order to allow overflows to the XADT
without trapping into the OS for reverse translation, VTM
must append each cache line with its virtual page number.
For 32-byte cache lines, this implies a 10% area increase for
data caches. Third, the hardware must provide coherence
for the cached copies of the overflow count and the XF in
each processor. Also, these cached copies must be consis-
tent with updates to the XADT. For example, a processor
incurring a miss must receive the answer to its coherence
miss requests before checking the overflow counter. Other-
wise, one can construct cases where a conflict is missed due
to a race between an XADT eviction and a counter update.
Overall, updating the counter and the XF must be done
carefully and, in several cases, accesses to these structures
should act like memory barriers or acquire/release instruc-
tions for relaxed consistency models.

LogTM: LogTM operates at cache line granularity and
uses eager versioning and conflict detection [16]. It allows
transactions to survive cache overflows, but not paging, con-
text switches, or excessive nesting. LogTM uses a cacheable,
in-memory log to record undo information that is used if a
transaction aborts. Hence, an overflowed cache line is writ-
ten back to main memory directly without allocation ad-
ditional storage in virtual memory. An overflow bit set in
the cache to allow the processor to check for conflicts when
requests for this line arrive from other processors. The over-
flow bit may lead to some false positives in conflict detection.

4. EXTENDEND TRANSACTIONAL
MEMORY (XTM)

The XTM system provides space, time, and nesting depth
virtualization while meeting all the requirements introduced
in Section 2. XTM is software-based and operates at the
OS or virtual machine level. The only hardware require-
ment for the base XTM is that an exception is generated
when a transaction overflows hardware caches or exceeds the
hardware-supported nesting depth. XTM handles transac-
tion read-sets and write-sets at page granularity. It uses lazy
versioning and conflict detection.

4.1 XTM Overview
With XTM, a transaction has two execution modes: all

in hardware (no virtualization) or all in software (virtual-
ized). When the hardware caches are filled, XTM catches
the overflow exception and switches to virtualized mode,
where it uses private pages from virtual memory as the ex-
clusive buffer for read- and write-set. Switching first aborts
the transaction in hardware mode, which clears all transac-
tional data from hardware caches, and then restarts it in vir-
tualized mode. While aborting introduces re-execution over-
head, it eliminates the need for an expensive hardware mech-
anism to transfer the physically-addressed transactional data
in caches to virtual memory. XTM also marks invalid the
entries in the data TLB for the processor executing the over-
flowed transaction. No other transactions are affected by the
switch.

In the virtualized mode, XTM catches the first access
to each page through a page-fault and creates on-demand
copies of the original page in virtual memory. By operating
on copies, the virtualized transaction is isolated from any
other transactional or non-transactional code. We create
two copies of the original page: the private page is created
on first access (load or store) and the snapshot page is cre-
ated just before the first store by copying the private page.
The private page buffers data updates by the transaction
until it commits successfully (lazy versioning). The snap-
shot is a pristine copy of the original page in memory at the
time the transaction started accessing it and is used for con-
flict detection. If a page is never written, we avoid creating
the snapshot as the private page is sufficient.

When creating the copies, XTM uses non-cached accesses
for two reasons: to avoid recursive overflows and to avoid
caching the metadata for overflowed transactions, which typ-
ically have low temporal locality. In fact, XTM works like
a streaming program: it reads data, applies a simple op-
eration, and writes them back in a sequential order. Most
modern instruction sets support non-cached accesses by pro-
viding a bit in each page-table entry that the software can
use to indicate if a page is cachable or not at this point. Once
the necessary copies are created by XTM, the transaction
can access data directly through loads/stores, with caching
enabled, and without the need for XTM to intervene.

A virtualized transaction checks for conflicts when it is
ready to commit (lazy conflict detection). Control is trans-
ferred to XTM using a commit handler [13]. XTM detects
conflicts by comparing each snapshot page to the original
page in virtual memory similar to backward-oriented valida-
tion developed in database literature [4]. If the contents of
the two pages differ, a conflict is signaled and the virtualized
transaction is rolled back by discarding all private pages. If
all snapshots are validated, we commit the transaction by

Nesting
Depth

VPN key 0
VPN key 1
VPN key 2

VPN key N

•
•
•

snapshot
private | R | W

parent

level 0 level 1virtual
address

nesting
depth

TM Space

• • •

Figure 1: The Virtualization Information Table
(VIT). The white box belongs to level 0, and the
gray boxes belong to level 1.

copying its private pages to their original locations.
XTM uses two private data structures to track transac-

tional state. First, a per-transaction page table provides
access to the private copies of pages in the read-set or write-
set of the transaction. Assuming a hierarchical organiza-
tion, this page-table is not fully populated. Instead, it is
allocated on demand and consists only of the translation
entries necessary for TM virtualization. For every virtual
page, the page table points to the physical location of the
private copy. The second structure is the Virtualization In-
formation Table (VIT), which is shown in Figure 1. The
VIT is organized as a hash table and contains one entry per
page accessed at each nesting level. An entry holds point-
ers to the private and snapshot pages, metadata indicating
if it belongs in the read-set or write-set, and the pointers
necessary for the hash table and to link related entries (see
Section 4.2). The VIT is queried using a virtual address
and a nesting depth. It can also be traversed to identify all
private copies for a transaction at a specific depth.

4.2 XTM Space and Depth Virtualization
Figure 2 presents an example of space and depth virtu-

alization using XTM. After an overflowing transaction is
aborted, XTM allocates a per-transaction page-table and
a VIT, both initially empty (❶). When the transaction
restarts in virtualization mode and attempts to read its first
page, XTM creates a private page and a VIT entry. The
newly allocated private page is pointed to by both the VIT
and the page table, and the R bit is also set in the VIT
entry (❷). On the first transactional write to the page, a
snapshot page is created, the VIT entry is updated, and the
W bit is set (❸). If the first transactional access had been
a write instead of a read, XTM would have executed steps
(❷) and (❸) together.

When a nested transaction begins in virtualized mode, we
need to independently track its read- and write-set. Hence,
we allocate a new per-transaction page table independent
from that of its parent transaction (❹). With the new table,
XTM catches the first read/write to a page by the nested
transaction without walking the parent’s table to change ac-
cess permissions. The new page table is also only partially
populated. On the other hand, we do not allocate a new
VIT. Nested reads (❺) and nested writes (❻) are handled
like those of the parent transaction. The first nested read
creates a new VIT entry that points to the parent’s private

level 0

PT ptr

private
snap 0

➌

➌ Transactional write

snap 0

Per-txn PT

VIT entry

private
page

parent

➍

Nested: ➍ begin, ➎ read,
➏ write

level 0

PT ptr

private
page

Per-txn PT VIT entry

snap 0

level 1

snap 1

➎

➏

private
parent

snap 0

private
parent

snap 1
➍

snap 0

Per-txn PT

VIT entry

private
page

privatelevel 0

➊

➋

➊ Overflow occurs
➋ Transactional readPT ptr

parent

➋

Figure 2: Example of space and nesting depth virtualization with XTM. ❶ When an overflow first occurs, a
per-transaction page table (PT) and a VIT are allocated. ❷ On the first transactional read, a private page is
allocated, and ❸ a snapshot is created on the first transactional write. ❹ When a nested transaction begins,
a new PT and VIT entry are created. ❺ A nested read uses the same private page, and a ❻ nested write
creates a new snapshot for rolling back the nested transaction.

page. If this is the first time this page is accessed at any
depth, we create a new private page. On the first nested
write, a new snapshot of the private page is created, and
the modification goes to the private page. If multiple trans-
actions in the nest access the same page, we have multiple
linked VIT entries and multiple snapshots, but the private
page is shared among the parent and all its nested children.

When the nested transaction needs to commit, it vali-
dates its read-set. The read-set is all snapshot pages and
all read-only private pages. Validation involves comparing
all pages in the read-set to the current state of the pages
in memory. If validation is successful (no differences), the
transaction commits by merging its transactional metadata
with that of its parent. Finally, the per-transaction page
table for the nested transaction is discarded. If validation
fails, the transaction is rolled back by discarding all VIT
entries at that level and its page table. Modified private
pages are rolled back using snapshots. When the outermost
transaction (nesting depth 0) commits, we copy all private
pages to the original locations and merge the private page
table’s metadata bits into the master page table.

To make the outermost commit atomic, a transaction must
gain exclusive access of all its virtualized pages. There are
multiple ways to support such functionality. One way is to
serialize commit while still allowing concurrent execution.
In TCC [5], commit serialization is achieved by acquiring
the commit token. For other systems, one can use TLB
shootdown to give overflowed transactions exclusive access
to validation pages. At the arrival of a shootdown message,
non-XTM transactions will be rolled back only if they have
a conflict with the committing transaction. An exception
handler is immediately invoked and executed as an open-
nested transaction [13]. The handler searches the cache for
lines already accessed that belong to the evicted page. Al-
ternatively, the TLB can maintain additional R/W bits in
each entry that allow the TLB shootdown handler to quickly
check for conflicts. The R/W bits are not part of the PTE
entry. One can devise an adaptive protocol that selects be-
tween the two options for atomic commit, if both are avail-
able. The protocol will decide based on the number of pages
committed and the expected impact of serialization or TLB
shootdowns. The writes used to copy private pages into
original locations must be snooped by hardware to check
conflicts for pending hardware-mode transactions.

Wait for a short
txn to finish

Abort a
young txn

Interrupt

Young txn?Can wait?

Switch txn to
XTM mode

Use selected txn's
CPU for interrupt

no

yes yes

no

Figure 3: Interrupt handling in XTM.

4.3 XTM Time Virtualization
XTM also handles events that require process swapping

(e.g., context switches or process migration). Once a trans-
action is in virtualization mode, all its state is in virtual
memory and can be paged in and out on demand.

Other events, like I/O interrupts, require interrupt han-
dling, before resuming user code. Existing TM virtual-
ization schemes [2, 18] propose swapping out transactional
state on such interrupts. Since most transactions are short [3],
XTM uses an alternate approach, shown in Figure 3, that
avoids swapping overhead in most cases. First, XTM waits
for one of the processors to finish its current transaction and
then assign it to interrupt processing. Since most trans-
actions are short, this will probably happen quickly. If
the interrupt is real-time or becomes critical, we abort the
youngest transaction and use its processor for interrupt han-
dling. When we restart the transaction, we use the hardware
mode. If a transaction is restarted many times due to inter-
rupts, we restart it virtualized so further interrupts will not
cause aborts. The latter case only happens if all transactions
in the system are long, which is very rare [3].

To implement this process on an interrupt, the interrupt
controller launches the OS scheduler to a statically selected
core or one selected dynamically based on its current status.
The scheduler runs in its own transactional context using an
open nested transaction so that the transaction executing on
this processor is not affected. The scheduler consults XTM
to select a core to run the actual interrupt handler based on
the process in Figure 3.

4.4 Discussion
XTM can be implemented either in the OS as part of the

virtual memory manager or between underlying TM systems
and the OS, like virtual machines [25]. Its only hardware
requirements are exceptions for virtualization events (e.g.,
cache overflow, exceeding nesting depth, etc.). XTM im-
plements per-transaction page tables, which can be cheaply
realized by copying and modifying only the portion of the
master page table containing the addresses accessed by the
overflowed transaction. For example, XTM in x86 starts
with a 4KB empty page directory and augments it with
second-level 4KB page tables as needed. Since XTM is
software-only, all its policies and algorithms can be tuned
or changed without affecting the processor ISA.

Long virtualized transactions are more likely to abort due
to interference. Fairness between overflowed transactions
and un-overflowed ones depends on the validation scheme.
The validation scheme based on TLB shootdown provides a
chance for software to control fairness at conflict detection.
Either the un-overflowed or the overflowed transactions can
be selected to rollback with a prioritization policy such as
aging. In the scheme with the TCC token, the token arbitra-
tor can assign a high priority to the overflowed transactions
to prevent starvation [5].

To reduce the overheads, XTM can allocate a number of
virtual memory pages for each processor at the beginning of
the program. These pages can be used by XTM on demand
for private copies and snapshots, avoiding the overhead of
allocation unless the number of pre-allocated pages proves
insufficient.

5. ENHANCED XTM SCHEMES
We now introduce XTM-g and XTM-e that use a limited

set of hardware features to reduce the overhead of virtual-
ization.

5.1 XTM-g
On a cache overflow in the base XTM design, we abort

the transaction and switch to virtualized mode; this incurs
large penalties. In XTM-g, a transaction overflows to virtual
memory gradually, without an abort. Hardware handles the
data accessed by the transaction up to now, and any new
data are tracked in the virtual memory system. XTM-g
is especially beneficial when the hardware caches overflow
frequently by a small amount of data.

When virtualized, a transaction buffers state in both hard-
ware and virtual memory. To distinguish the two, we intro-
duce the overflow or OV bit to page table entries3, TLB
entries, and cache lines. If OV is set, the corresponding
data have been virtualized. Upon eviction, data that do
not belong in the read-set or write-set of any transaction
are evicted as usual. If a line accessed by a transaction is
evicted, XTM-g copies the line to a private page and marks
its OV bit in the page table. It is possible for virtualized
lines to re-enter the hardware caches, in which case the OV
bit is set in the cache. Lines with the OV bit set can simply
be evicted from the cache, since they are already virtualized.

Figure 4 illustrates XTM-g. In this example, the hardware
cache has three lines written by a transaction, where two of
them belong to the same page. When one of the two lines

3Several architectures, such as x86, provide a few bits per
page table entry for future uses.

is evicted because of an overflow, an exception is raised and
the XTM-g software starts. It first uses reverse translation
to find the virtual address for the overflowed line. Then
it creates the private page and snapshot, updates the VIT,
and writes the evicted data to the private page. Before
returning, XTM-g queries the cache about other lines from
the same virtual page and finds the other line. It is also
evicted to the private page and their metadata are placed
in the VIT. Finally, the OV bit of the page is set in the
page table so cache lines that re-enter the cache will have
their OV bit set. By the end of this process, the transaction
has one page in virtual memory while the rest is still in the
hardware cache (❶). If other overflows occur, more pages
can be moved to virtual memory as needed. Once evicted,
the cache lines are reloaded with the private page address
and their OV bit set in the cache (❷). When they are re-
evicted, cache eviction logic checks their OV bits. Since the
bits are set, they are allowed to be evicted to the private page
without an eviction exception (❸). To properly commit such
a transaction, the hardware TM system must support a two-
phase commit protocol [13]. Once validation of hardware-
tracked data is complete, control is transferred to XTM-g
to validate the pages in virtual memory. If that validation
passes, we first commit the data in virtual memory (❹) and
then return to the hardware system to commit the cache
data (❺). Essentially, XTM-g runs as a commit handler [13].

5.2 XTM-e
XTM and XTM-g operate at page granularity and are

prone to aborts due to false sharing: a transaction may abort
because it read a word in the same page as a word commit-
ted by another transaction. XTM-e allows cache line-level
tracking of read- and write-sets, even for overflowed data.
First, each VIT entry is made longer to have one set of R
and W bits per cache line in the page. XTM-e evicts cache
lines to virtual memory similar to XTM-g, but also sets the
fine-grain R/W bits in the VIT using the metadata found
in the cache. Second, XTM-e must handle the case where a
cache line in a virtualized page is accessed later.

A näıve solution would be to switch to software on every
access to a page with the OV bit set in the TLB in order to
update the VIT entry. To avoid this unnecessary overhead,
XTM-e uses an eviction log buffer (ELB). The ELB is a small
hardware cache, addressed by cache line address, that stores
a tag and the R and W bits for a cache line. When a line
from an OV page is accessed, we note the R or W metadata
in the ELB without interrupting the user software. When
the ELB overflows due to associativity or capacity issues, we
merge the metadata in all valid ELB entries into the proper
VIT entries. In other words, the ELB allows us to amortize
the cost of an exception over multiple cache lines. If the
ELB does not fill until the transaction completes, we trans-
fer metadata from the ELB to the VIT before the validation
step. During validation, XTM-e uses the fine-grain R/W
bits available to determine which cache lines within a snap-
shot or private page should be compared with the original
page in memory to check for conflicts. Overall, XTM-e im-
proves on XTM-g by eliminating most of the false sharing,
which is common if pages are sparsely accessed by transac-
tions.

6. QUALITATIVE COMPARISON
Here, we provide a qualitative comparison between the

tag ov

pg1 blk1 0
pg2 blk1 0
pg2 blk2 0

snap 0
private

VIT entry

parent

pg2' blk1
pg2' blk2

page ov

pg2' 1
pg1 0

snap 0

Per-txn PT

Private pg2'

Cache

➊

➊ Handle
 eviction

tag ov

pg1 blk1 0

Cache

pg2' blk1 1

snap 0
private

VIT entry

parent

pg2' blk1
pg2' blk2

page ov

pg2' 1
pg1 0

snap 0

Per-txn PT

Private pg2'➋

➋ Reload
➌ Re-eviction

➌ tag ov

pg1 blk1 0

Cache

pg2' blk1 1

pg2' blk2

pg 2

pg 1

Private
pg2'

➍

➍

➎

➍ XTM-g commit
➎ HTM commit

Figure 4: Example of space virtualization with XTM-g. The transaction starts with three modified cache
lines. ❶ When a line is evicted because of overflows, the transaction is not aborted. A private page and a
snapshot are made (since the line is modified), the OV bit is set in the PT, and the line is copied. ❷ When
the evicted line is reloaded in the cache, the line’s OV bit is set. ❸ The line is re-evicted to the private page
without an eviction exception. ❹ XTM-g commits first, then ❺ the hardware TM (HTM) commits.

XTM XTM-g XTM-e VTM

Virtualization space, time, nesting depth space, time

HW Cost OV exception OV exception, OV bit OV exception, OV bit, ELB
XADT walker, XADT cache,
virtual tags in caches

SW Cost VIT, page tables, extra copies per accessed page XADT, XSW, XF, overflow count
Switch Overhead transaction abort OS handler HW handler

Other Overheads
page copying, page copying, accessing XADT/XF,
page comparisons cache line comparisons XF/count consistency

Sensitivity page occupancy, false-sharing page occupancy XF miss ratio
Flexibility pure SW mostly SW mostly HW

Table 2: A qualitative comparison between XTM, XTM-g, XTM-e, and VTM.

software-based XTM system and the hardware-based VTM
system [18]. Table 2 summarizes the key differences. Note
that VTM does not provide virtualization of nesting depth.

Hardware Cost and Memory Usage: The only HW
requirement for XTM is an exception when virtualization is
needed. XTM-g requires OV bits in page tables and caches,
while XTM-e adds the ELB as well. On the other hand,
VTM require significant hardware components and complex-
ity: a cache for its overflow structure (XADT), hardware
walkers for the XADT, and hardware to enforce coherence
and consistency for the overflow counter and the filter. Un-
fortunately, the complexity of VTM goes beyond microarchi-
tecture. The XADT organization and any software visible
issues about the way it is cached (e.g., consistency) must
become part of the ISA.

On the other hand, XTM can lead to memory usage issues
as it requires storage for the per-transaction page table, the
VIT and the private/snapshot copies. Even though the page
tables are not fully populated, the XTM space requirements
will be higher than that for VTM, particularly if transac-
tions overflow hardware caches by a few cache lines. VTM
uses memory space only for the XADT, which is a hash table
for evicted cache lines.

Implementation Flexibility: XTM is implemented purely
in software. XTM-g and XTM-e have small and simple hard-
ware requirements. Since most of these three systems is in
software, there is significant flexibility in tuning their poli-
cies and integrating them with the operating system. On
the other hand, VTM requires both hardware and firmware,
which means that there little flexibility in data structure
organization, underlying coherence protocols for the XADT
caching, etc. Nevertheless, the hardware implementation of
VTM allows for better performance isolation between virtu-

alized transactions and non-virtualized transactions. With
XTM, making the software commit atomic can cause stalls
to other transactions from the same process. Nevertheless,
processors executing transactions from other processes are
never affected, which is particularly important.

Performance: So far we have argued that XTM and
its enhancements provide lower hardware cost and better
flexibility than VTM. Hence, the question becomes how they
compare in performance. If the software-based XTMs can
also provide competitive performance, then they have an
edge over the hardware-based VTM.

The base XTM system can introduce significant over-
heads. When XTM virtualizes a transaction, it starts with
an abort. The necessary re-execution can be expensive for
long transactions. Of course, these overheads are impor-
tant if virtualization events are often. If this is the case,
XTM-g (eliminates aborts for switch) and XTM-e (reduces
aborts due to false sharing) will be necessary for the XTM
approach to be competitive. XTM also benefits from ap-
plications that access most of the data in each page they
touch, as this makes page copying operations for versioning
or commit less wasteful.

On the other hand, VTM’s overhead comes mostly from
accessing the XADT when the XF filter misses. Hence, the
case when VTM can be slow is when many transactions over-
flow and searching, inserting, and deleting in a large XADT
becomes too slow. Note that manipulating the VIT is faster,
as each entry is for a whole page, not a cache line. Fur-
thermore, the VIT is private to each transaction, while the
XADT is shared within a process; hence, some synchroniza-
tion is needed for the XADT across processors. In all other
cases, VTM provides fast virtualization as it avoids switch-
ing to OS handlers and operates on data at fine granularity.

Feature Description

CPU
16 PowerPC cores,
200 cycle exception handling overhead

Cache Private, 4-way, 32KB, with 32B lines
Victim Cache 16 entries
Main memory 4KB page, 100 cycle transfer latency

Bus
16B wide, 3 cycle arbitration,
3 cycle transfer latency

Table 3: Parameters for the simulated CMP.

Again, this is particularly important if virtualization events
are often.

For time virtualization, XTM has a better process that
avoids swapping transactions in many cases. On the other
hand, VTM always swaps out transactional state, even to
run a short interrupt handler. Hence, VTM can be ineffi-
cient for handling frequent interrupts.

7. QUANTITATIVE COMPARISON
We compared XTM to VTM using an execution-driven

simulator. To our knowledge, this is the first quantitative
analysis of TM virtualization. Table 3 shows the simula-
tion parameters for our experiments. The simulator models
a CMP with 16 single-issue PowerPC processors. For an
underlying hardware TM system, we used TCC because it
allows transactions to be used for both non-blocking syn-
chronization and thread-level speculation [5]. The latter
case leads to larger transactions likely to stress hardware
resources. Each processor can track transactional state in
its 32KB, 4-way associative L1 data cache (32B lines) [3].
A 16-entry victim cache is used as a simple mechanism to
eliminate most of the conflict misses [14]. The simulator cap-
tures the memory hierarchy timing, including all contention
and queuing.

As mentioned in section 4.4, XTM can be implemented
in the virtual memory module of an OS or a virtual ma-
chine. We implemented XTM as privileged software mod-
ule invoked in our simulated system by event handlers as
described in [13]. For example, commit handlers invoke
XTM if the transaction is virtualized. XTM is written in
C and PowerPC assembly and is approximately 3,000 lines
of code. It takes about 1,400 dynamic instructions to over-
flow a page gradually for XTM-g/e. The base XTM restarts
an overflowed transaction instead of overflowing pages grad-
ually. For XTM and XTM-g, it takes about 2,300 instruc-
tions per validation and 1,400 instructions per commit per
page. Instruction counts for XTM-e vary by page occu-
pancy. Dynamic instruction counts can be reduced using
unrolling and/or SIMD instructions for faster page copying
(Altivec [?], SSE [?], etc.).

We also implemented VTM as a hardware extension to
the simulator (XADT walker, coherence for XF and overflow
count, etc.). Our experiments focus on virtualization events
when a single application runs on the CMP—we did not
conduct multiprogramming experiments.

We used three parallel benchmarks from SPLASH2 [26]
(radix, volrend, and water-spatial) and one from SPLASH [22]
(mp3d), which used transactions to replace locks for non-
blocking synchronization and use mostly small transansac-
tions. We also used two SPEC [23] benchmarks (equake and
tomcatv), which use transactions for speculative paralleliza-
tion at the outermost loop level and are likely to produce

many long transactions. To explore other interesting pat-
terns not generated by the six applications, we also designed
a microbenchmark to produce randomized accesses with a
desired average transaction length, size of read-/write-sets,
and nesting depth.

7.1 Space Virtualization
Figure 5 presents the comparison between XTM and VTM

for space virtualization (i.e., overflow of hardware caches).
We have omitted mp3d, water-spatial, and equake because
they never overflow with a 32KB cache and thus experi-
ence no virtualization overheads with the studied schemes.
It is expected that short transactions that run successfully
without virtualization will be the common case [3]. The
microbenchmark was configured with three average read-
/write-set sizes, where -Pn means accessing a uniformly ran-
dom number of pages between 1 and n, inclusive.

Figure 5 shows the breakdown of the execution time for
each virtualization scheme relative to VTM. The overhead
is broken down into time spent for data versioning, com-
mitting, and validation (conflict detection). For radix and
micro-P10, the base XTM works well and introduces over-
head of less than 6%. For the rest of the programs, XTM in-
troduces significant overhead due to the transaction aborts
when switching to virtualized mode and due to the time
necessary to make the private and snapshot copies. How-
ever, XTM-g and XTM-e reduce the overhead of XTM sig-
nificantly and make it comparable to that of VTM (less
than 0.5% for several cases). Note that the results from
the microbenchmark show the idle time varying across the
schemes. It is due to the barrier placed at the end of the
parallel execution to synchronize the threads. Buffer over-
flows randomly introduced by the threads easily break load
balancing around the barrier, forcing the threads with fewer
overflows to wait a long time at the barrier.

The overhead breakdown for volrend and radix is shown
enlarged in Figure 6. For volrend, VTM performs better,
while for radix, XTM-e is the fastest. The reason is the
time spent searching for overflowed data. VTM’s data ver-
sioning cycles come from time spent overflowing data to the
XADT and then accessing it again later. On the other hand,
the XTMs’ data versioning cycles come from changing the
address mapping of overflowed pages to point directly to the
corresponding private pages. For programs that repeatedly
access overflowed data, search time is more significant than
overflow time.

With tomcatv, all virtualization schemes lead to relatively
large overheads. Other programs contain only a few trans-
actions that overflow, but in tomcatv, a larger number of
transactions require virtualization, with multiple transac-
tions overflowing concurrently. VTM leads to virtualization
overhead of 6%. Despite relying mostly on software, XTM-e
and XTM-g perform reasonably well and lead to an overhead
of 9%.

So far we have assumed that hardware can store transac-
tional state only in the 32KB L1 data cache. However, one
can also place transactional state in the L2 cache, reduc-
ing the frequency of overflow. Figure 5 shows the impact of
cache space available for transactional buffering. If 64KB
are available, tomcatv, volrend, and micro-P10 do not gen-
erate any overflows and all schemes lead to 0% overhead.
For the remaining benchmarks, larger HW capacity means
less-frequent overflows, hence the overhead of virtualization

0

0.5

1

1.5

2

2.5

3

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

X
T
M

X
T
M

-g

X
T
M

-e

V
T
M

tomcatv
[37.7%]

volrend
[0.01%]

 radix
[0.26%]

micro-P10
[39.2%]

micro-P20
[60.3%]

micro-P30
[60.8%]

 radix
(64KB)

[0.12%]

micro-P20
(64KB)
[4.68%]

micro-P30
(64KB)
[5.40%]

micro-P30
(128KB)
[0.68%]

N
o
rm

al
iz

ed
 E

xe
cu

ti
o
n
 T

im
e Versioning

Validation
Commit
Violations
Idle
Useful

8.3

Figure 5: Execution time breakdown for space virtualization. For tomcatv, XTM’s validation is 0.3× and
versioning is 5.1×. The left set of bars is with a 32KB transactional state buffer, and the right set of bars
shows the effect of larger buffers. Times are normalized to VTM with a 32KB buffer, and the bracketed
numbers show the percentage of overflowed transactions.

0

1

2

3

4

5

6

XTM-g XTM-e VTM XTM-g XTM-e VTM

volrend radix

N
o
rm

al
iz

ed
 O

ve
rh

ea
d
 T

im
e

Versioning
Validation
Commit

13.8

Figure 6: Overhead time breakdown for XTM-g,
XTM-e, and VTM normalized to VTM.

drops. At 128KB, no real application has any overflows and
only micro-P30 requires 256KB before it shows the same
behavior. Overall, the conclusion is that if the L2 cache is
used to buffer transactional state, even applications that use
TM for speculative parallelization of outer loops will rarely
overflow hardware resources. Hence, the small overhead in-
crease due to a software virtualization system like XTM is
no longer significant.

7.2 Memory Usage
Table 4 measures the memory requirements of the vir-

tualization schemes. For XTM, we measure the maximum
number of VIT entries and extra pages needed for copies per
transaction. For VTM, we count the maximum number of
XADT entries per transaction, and we compare the num-
ber of VIT and XADT entries, which affects the searching
latency for both data structures. Since XTM has a VIT
entry per page, the number of VIT entries is much smaller
than the number of VTM’s XADT entries. No benchmark

Benchmark XTM XTM-g XTM-e VTM

tomcatv 21 (439) 15 (257) 15 (254) 4025
volrend 33 (316) 19 (136) 19 (139) 238
radix 21 (124) 7 (23) 8 (27) 779
micro-P10 19 (350) 9 (86) 9 (90) 1396
micro-P20 29 (495) 18 (207) 18 (202) 8039
micro-P30 39 (700) 28 (386) 28 (380) 17319

Table 4: Memory pressure. This table shows the
maximum number of XADT entries for VTM and
the maximum number of VIT entries for XTM. The
maximum number of extra pages used by XTM is
enclosed in parentheses.

uses more than 39 VIT entries, while some benchmarks use
up to 17,000 XADT entries. The bulk of the memory over-
head for XTM comes from the private and snapshot page
copies. However, no benchmark uses more than 700 copies
for base XTM (2.8MB) or 386 pages for XTM-e and XTM-g
(1.5MB). For VTM, the XADT must store 32B cache lines
and metadata. Hence, for a maximum of 17,300 entries, the
XADT will occupy about 650KB. In summary, despite using
page granularity, XTM does not have unreasonable memory
usage requirements for any modern system.

7.3 Time Virtualization
To compare XTM to VTM with time virtualization, we

simulated the arrival of I/O interrupts every 100,000 cycles.
On an interrupt, we need to find a processor to execute
its handler. We set the handler size to zero cycles, so all
the overhead is due to switching in and out of the handler.
VTM suggests that when an interrupt arrives, a transaction
is swapped out to virtual memory to provide a processor for
the handler. For XTM, we evaluated two policies. One is
the VTM policy (abort transaction, restart later in virtual-
ized mode). The other is the three-stage interrupt handling
process explained in Section 4.3 that avoids virtualization
unless necessary to guarantee forward progress.

Figure 7 shows the overhead introduced by the virtualiza-
tion scheme as interrupts occur within a program. The ref-

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

XTM VTM XTM+ XTM VTM XTM+ XTM VTM XTM+

equake mp3d water-spatial

N
o
rm

al
iz

ed
 E

xe
cu

ti
o
n
 T

im
e

Figure 7: Execution time with time virtualization
normalized to VTM. ‘+’ stands for our time virtu-
alization mechanism described in Section 4.3.

erence is the case where no interrupts are raised. The XTM
bar assumes the VTM swap-based policy. The XTM+ bar
assumes the proposed approach that first attempts to abort
and retry a young transaction in hardware mode. The ab-
solute percentage of overhead is not particularly interesting
as we set the handler to be empty. What is interesting is
the relative comparison between the different schemes. In
all cases, using XTM with the policy that favors aborts over
swapping leads to lower overheads even when compared to
the hardware-based VTM. The proposed approach essen-
tially eliminates transaction swapping. Using VTM’s swap-
ping approach with the XTM system leads to the highest
overheads as swapping in XTM is expensive.

7.4 Depth Virtualization
None of our programs use a nesting depth that exceeds

what the hardware can support (2 to 4 nesting levels) [13].
Hence, to measure nesting virtualization overhead we used a
microbenchmark that generates nesting depths that exceed
the hardware support. Table 5 shows the execution time
overhead as we vary the percentage of deeply nested transac-
tions that exceed the hardware capabilities from 0.5% to 5%.
This range is reasonable given a recent study that found that
most programs have less than 1% nested transactions overall
and the average nesting depth for that subset is 2.2 [3].

For this experiment, we measure only the base XTM as
VTM does not support nesting depth virtualization and
XTM-g and XTM-e behave identically to the base XTM.
The overhead is measured against a simulation with hard-
ware suport for infinite nesting levels. The execution time
overhead for XTM is 2.7% and 5.9% when the frequency
of nested transactions is 0.5% and 1% respectively. Hence,
XTM can efficiently virtualize deeply nested transactions
they are uncommon. On the other hand, at 2% and 5% fre-
quency of deeply nested transactions, XTM lead to 17.6%
and 45.6% overhead respectively. If deeply nested transac-
tions become that frequency, we should probably revisit the
hardware and provide direct support for additional levels
of nesting. Note that in many cases, it is functionally cor-
rect to flatten nested transactions when the hardware sup-
port is exceeded. Nesting virtualization should be reserved
for cases where independently aborting a nested transac-
tion may change the program functionality (e.g., the nested
transaction need not be re-executed after aborting). Open-
nested transactions should always invoke virtualization if

Nesting
Versioning Validation Commit

Total
Freq. Overhead

5% 42.86% 2.32% 0.42% 45.60%
2% 16.61% 0.84% 0.16% 17.61%
1% 5.54% 0.27% 0.06% 5.87%
0.5% 2.60% 0.12% 0.02% 2.74%

Table 5: Nesting depth virtualization overhead.

0

1

2

3

4

5

6

7

tomcatv radix volrend

N
o
rm

al
iz

ed
 E

xe
cu

ti
o
n
 T

im
e

TCC
TCC+XTM

Figure 8: Normalized execution time for XTM and
serialization-based virtualization. Total execution
time is normalized to that with XTM-g.

the hardware resources are exceeded.

7.5 Comparison to Serialization Schemes
Certain TM architectures use transaction serialization to

provide space virtualization [5]. When a transaction over-
flows the contention manager or commit arbiter guarantees
that it will commit. Hence, the transaction can overflow
updates directly to non-transactional memory without the
need for additional data structures for virtualization. Other
transactions that conflict with the overflowed transaction
are forced to roll back as if the overflowed transaction had
already committed. One can also extend this scheme to pro-
vide time virtualization by allowing the metadata for over-
flowed cache lines to be stored in non-transactional memory
as well. There are two basic disadvantages of such an ap-
proach. From the point of view of functionality, this scheme
requires that an overflowed transaction will never attempt
to roll back voluntarily (e.g., call abort). Moreover, it means
that overflowed transactions do not provide fault atomicity.
From the point of view of performance, this scheme limits
scalability by preventing the other transactions from com-
mitting when an overflowed transaction is running. On the
other hand, such as scheme allows transactional execution to
happen in parallel with one commit and involves no software
overheads.

To look into the performance issue, we compared XTM
and XTM-g to the original TCC that uses the commit token
for serialization on a cache overflow. Figure 8 shows the to-
tal execution time for the original TCC versus TCC+XTM,
normalized to TCC+XTM-g which performs the best. The
serialization scheme outperforms XTM for radix and vol-
rend by 20% to 40%. Correlating this result with Table 4
produces an interesting observation. The big difference in
the number of the pages used by XTM and XTM-g is a good
indicator that XTM may incur a very high overhead for a
specific application. Compared to XTM-g, XTM uses addi-
tional pages to re-execute the portion of the transaction until
the first overflow. If most transactions that exceed hardware

0

1

2

3

4

5

6

7

8

9

TCC+XTM XTM-only TCC+XTM XTM-only TCC+XTM XTM-only

tomcatv micro-P7 micro-P5

N
o
rm

al
iz

ed
 E

xe
cu

ti
o
n
 T

im
e Versioning

Validation
Commit
Violations
Idle
Useful

Figure 9: Execution time for TCC+XTM and XTM-
only normalized to TCC+XTM.

resources overflow nearly at their ends, XTM will experience
significant overhead while the serialization scheme will han-
dle them without a major slowdown. On the other hand,
applications such as tomcatv have long-lived transactions
that overflow early and by a lot. In this case, commit seri-
alization is a major performance bottleneck.

Overall, Figure 8 demonstrates that serialization-based
schemes do not lead to significant and consistent perfor-
mance improvements that justify the functionality issues.

7.6 XTM-only Transactional Memory
The mechanisms of the base XTM can provide transac-

tional execution semantics without any hardware support.
Hence, instead of using XTM as a virtualization scheme for
a hardware TM system, we can use XTM on its own as a
software TM (STM) implementation. Conventional STM
systems require that all code that may execute within a
transaction is recompiled to insert the proper read and write
barriers that allow the TM runtime to provide atomicity and
isolation [21, 1, 7]. On the other hand, XTM is transpar-
ent to the user and can work with any binaries as atomicity
and isolation are provided at the operating system level us-
ing page-granularity operations. Transparency is one of the
main advantages of hardware TM systems over software im-
plementations. If XTM on its own can provide sufficiently
good performance for transactional execution, it can elimi-
nate the need for a hardware TM architecture.

Figure 9 shows a performance comparison between XTM
when used with a hardware TM system (TCC+XTM) and
XTM used independently as an STM (XTM-only). Each
of the three benchmarks represents a different scenario: no
overflows with micro-P5, rare overflows with micro-P7, and
frequent overflows with tomcatv. From the figure, the fewer
overflows an application has, the larger the performance gap
between TCC+XTM and XTM-only. Rare overflows allows
the application to spend more time in hardware mode; thus,
as 6.6% of the transactions overflow in micro-P7, TCC+XTM
runs 3.1 times faster than XTM-only. In the extreme case
of no overflows (micro-P5), TCC+XTM is 8.3 times faster.
There are two factors that account for the slowdown of
XTM-only. One is a higher overhead for TM suport in
software only mode shown as the increment of versioning
and validation cycles. The other is frequent violations from
false sharing due to page-granular conflict check all the time
shown as the increment of violation cycles. This result sug-

gests that, while cost-effective, XTM may best be used as
a backup mechanism from the viewpoint of balancing per-
formance and cost. It is interesting to note that the perfor-
mance gap between TCC+XTM and XTM-only is unlikely
to be as large as that between hardware TM and software
TM as TCC+XTM has the additional overhead of switching
execution mode from TCC to XTM at overflows.

8. RELATED WORK
Proposed software TM implementations also provide trans-

actional semantics without hardware constraints as they are
always built on top of virtual memory [21, 6, 8, 12, 1]. This
paper focuses on virtualization for hardware TM systems
because they provide transactional semantics with minimal
overheads and make the implementation details transparent
to software. XTM can also be seen as a hybrid TM system,
as it supports transactions in both hardware and software
modes. Unlike [10] and [15] that use user-level software and
compiler support, XTM uses kernel-mode software. XTM is
completely transparent to all levels of user software (appli-
cation and compiler).

XTM builds upon the research on page-based, cache-coherent
DSM systems [24, 20]. Unlike page-based DSM, XTM is a
backup mechanism utilized only in the uncommon case when
hardware resources are exhausted. XTM also draws on re-
search that uses virtual memory to implement transactional
semantics for the purpose of persistent storage [19, 11].

9. CONCLUSIONS
For transactional memory to achieve its potential as a

technology that simplifies parallel programming, virtualiza-
tion of transactional hardware is necessary. Transactions
must be able to overflow hardware, survive interrupts and
context switches, and deal with arbitrary nesting depths
without compromises in functionality and transactional se-
mantics.

This paper presented eXtended Transactional Memory (XTM)
as the first mechanism to virtualize all three TM aspects:
space, time, and nesting depth. XTM is a software-only
approach that requires no hardware support since, in the
common case, virtualization will likely be invoked infre-
quently. XTM operates at the operating system level and
handles transactional state at the granularity of pages. We
also presented two enhancements to the base XTM, XTM-g
and XTM-e, that use limited hardware support to address
basic performance overheads if overflows become more fre-
quent. Finally, we provided the first quantitative evaluation
of TM virtualization schemes, which included all three XTM
schemes and a hardware-based alternative (VTM). We found
that, despite being software based, the XTM designs provide
similar performance to VTM with the cache sizes easily af-
fordable in modern multi-core chips (e.g., 32KB). Even for
demanding applications, emulated by microbenchmarks in
our experiments, XTM-g and XTM-e show competitive or
better performance than VTM. We also compared XTM to
schemes that use serialization to provide virtualization and
studied its performance without a hardware TM substrate.
Overall, XTM provides a fully-featured and flexible solution
for the virtualization of TM hardware at a low complexity
cost. Using XTM, software developers can develop simpler
parallel code that runs on TM architectures and is not lim-
ited by any implementation-specific constraints.

Acknowledgements
This research was sponsored by the Department of Energy
under grant number DE-FG02-03ER25564. It was also funded
by the Defense Advanced Research Projects Agency (DARPA)
under grant number NBCH104009. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the Department of
Energy, the Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

Additional support was also available through an NSF Ca-
reer Award (CCF-0546060) and through the MARCO Focus
Center for Circuit & System Solutions (C2S2) under con-
tract 2003-CT-888.

10. REFERENCES

[1] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and runtime support
for efficient software transactional memory. In PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, New
York, NY, USA, 2006. ACM Press.

[2] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie. Unbounded Transactional Memory.
In Proceedings of the 11th International Symposium on
High-Performance Computer Architecture (HPCA’05),
pages 316–327, San Franscisco, California, February 2005.

[3] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D.
Carlstrom, C. Kozyrakis, and K. Olukotun. The Common
Case Transactional Behavior of Multithreaded Programs.
In Proceedings of the 12th International Conference on
High-Performance Computer Architecture, February 2006.

[4] T. Haerder. Observations on optimistic concurrency control
schemes. Inf. Syst., 9(2):111–120, 1984.

[5] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In Proceedings of the 31st
International Symposium on Computer Architecture, pages
102–113, June 2004.

[6] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA ’03: Proceedings of the 18th
annual ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications, pages
388–402. ACM Press, 2003.

[7] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi.
Optimizing memory transactions. In PLDI ’06: Proceedings
of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, New York, NY,
USA, 2006. ACM Press.

[8] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC ’03: Proceedings
of the twenty-second annual symposium on Principles of
distributed computing, pages 92–101, New York, NY, USA,
July 2003. ACM Press.

[9] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, pages 289–300, 1993.

[10] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and
A. Nguyen. Hybrid transactional memory. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, New York,
NY, USA, March 2006. ACM Press.

[11] D. E. Lowell and P. M. Chen. Free Transactions with Rio
Vista. In Proceedings of the 16th symposium on Operating
systems principles, Saint Malo, France, October 1997.

[12] V. J. Marathe, W. N. Scherer III, and M. L. Scott.
Adaptive Software Transactional Memory. In 19th
International Symposium on Distributed Computing,
September 2005.

[13] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
Semantics for Practical Transactional Memory. In
Proceedings of the 33rd International Symposium on
Computer Architecture, June 2006.

[14] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D.
Carlstrom, L. Hammond, C. Kozyrakis, and K. Olukotun.
Characterization of TCC on Chip-Multiprocessors. In
PACT ’05: Proceedings of the 14th International
Conference on Parallel Architectures and Compilation
Techniques, pages 63–74, Washington, DC, USA,
September 2005. IEEE Computer Society.

[15] M. Moir. Hybrid transactional memory. Unpublished
manuscript, July 2005.

[16] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. LogTM: Log-Based Transactional Memory. In
12th International Conference on High-Performance
Computer Architecture, February 2006.

[17] R. Rajwar and J. R. Goodman. Transactional lock-free
execution of lock-based programs. In ASPLOS-X:
Proceedings of the 10th international conference on
Architectural support for programming languages and
operating systems, pages 5–17, New York, NY, USA,
October 2002. ACM Press.

[18] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
Transactional Memory. In ISCA ’05: Proceedings of the
32nd Annual International Symposium on Computer
Architecture, pages 494–505, Washington, DC, USA, June
2005. IEEE Computer Society.

[19] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.
Steere, and J. J. Kistler. Lightweight Recoverable Virtual
Memory. ACM Transactions on Computer Systems, 12(1),
1994.

[20] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:
a Low Overhead, Software-only Approach for Supporting
Fine-grain Shared Memory. In Proceedings of the 7th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
Cambridge, MA, October 1996.

[21] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the 14th Annual ACM Symposium on
Principles of Distributed Computing, pages 204–213,
Ottawa, Canada, August 1995.

[22] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH:
Stanford Parallel Applications for Shared-Memory.
Computer Architecture News.

[23] Standard Performance Evaluation Corporation, SPEC CPU
Benchmarks. http://www.specbench.org/, 1995–2000.

[24] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt,
L. Kontothanassis, S. Parthasarathy, and M. Scott.
Cashmere-2L: Software Coherent Shared Memory on a
Clustered Remote-write Network. In Proceedings of the
16th Symposium on Operating Systems Principles, Saint
Malo, France, 1997.

[25] C. A. Waldspurger. Memory Resource Management in
VMware ESX server. SIGOPS Oper. Syst. Rev.,
36(SI):181–194, 2002.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH2 Programs: Characterization and
Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages
24–36, June 1995.

