LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation

Chris Lattner

Vikram Adve

University of lllinois at Urbana-Champaign
{lattner,vadve}@cs.uiuc.edu
http://1lvm.cs.uiuc.edu/

ABSTRACT

This paper describes LLVM (Low Level Virtual Machine),
a compiler framework designed to support transparent, life-
long program analysis and transformation for arbitrary pro-
grams, by providing high-level information to compiler
transformations at compile-time, link-time, run-time, and in
idle time between runs. LLVM defines a common, low-level
code representation in Static Single Assignment (SSA) form,
with several novel features: a simple, language-independent
type-system that exposes the primitives commonly used to
implement high-level language features; an instruction for
typed address arithmetic; and a simple mechanism that can
be used to implement the exception handling features of
high-level languages (and setjmp/longjmp in C) uniformly
and efficiently. The LLVM compiler framework and code
representation together provide a combination of key capa-
bilities that are important for practical, lifelong analysis and
transformation of programs. To our knowledge, no existing
compilation approach provides all these capabilities. We de-
scribe the design of the LLVM representation and compiler
framework, and evaluate the design in three ways: (a) the
size and effectiveness of the representation, including the
type information it provides; (b) compiler performance for
several interprocedural problems; and (c) illustrative exam-
ples of the benefits LLVM provides for several challenging
compiler problems.

1. INTRODUCTION

Modern applications are increasing in size, change their
behavior significantly during execution, support dynamic
extensions and upgrades, and often have components writ-
ten in multiple different languages. While some applications
have small hot spots, others spread their execution time
evenly throughout the application [14]. In order to maxi-
mize the efficiency of all of these programs, we believe that
program analysis and transformation must be performed
throughout the lifetime of a program. Such “lifelong code
optimization” techniques encompass interprocedural opti-

mizations performed at link-time (to preserve the benefits of
separate compilation), machine-dependent optimizations at
install time on each system, dynamic optimization at run-
time, and profile-guided optimization between runs (“idle
time”) using profile information collected from the end-user.

Program optimization is not the only use for lifelong anal-
ysis and transformation. Other applications of static anal-
ysis are fundamentally interprocedural, and are therefore
most convenient to perform at link-time (examples include
static debugging, static leak detection [24], and memory
management transformations [30]). Sophisticated analyses
and transformations are being developed to enforce program
safety, but must be done at software installation time or
load-time [19]. Allowing lifelong reoptimization of the pro-
gram gives architects the power to evolve processors and
exposed interfaces in more flexible ways [11, 20], while al-
lowing legacy applications to run well on new systems.

This paper presents LLVM — Low-Level Virtual Ma-
chine — a compiler framework that aims to make lifelong
program analysis and transformation available for arbitrary
software, and in a manner that is transparent to program-
mers. LLVM achieves this through two parts: (a) a code rep-
resentation with several novel features that serves as a com-
mon representation for analysis, transformation, and code
distribution; and (b) a compiler design that exploits this
representation to provide a combination of capabilities that
is not available in any previous compilation approach we
know of.

The LLVM code representation describes a program using
an abstract RISC-like instruction set but with key higher-
level information for effective analysis. This includes type
information, explicit control flow graphs, and an explicit
dataflow representation (using an infinite, typed register set
in Static Single Assignment form [15]). There are several
novel features in the LLVM code representation: (a) A low-
level, language-independent type system that can be used to
implement data types and operations from high-level lan-
guages, exposing their implementation behavior to all stages
of optimization. This type system includes the type infor-
mation used by sophisticated (but language-independent)
techniques, such as algorithms for pointer analysis, depen-
dence analysis, and data transformations. (b) Instructions
for performing type conversions and low-level address arith-
metic while preserving type information. (¢) Two low-level
exception-handling instructions for implementing language-
specific exception semantics, while explicitly exposing ex-
ceptional control flow to the compiler.

The LLVM representation is source-language-independent,

for two reasons. First, it uses a low-level instruction set and
memory model that are only slightly richer than standard
assembly languages, and the type system does not prevent
representing code with little type information. Second, it
does not impose any particular runtime requirements or se-
mantics on programs. Nevertheless, it’s important to note
that LLVM is not intended to be a universal compiler IR.
In particular, LLVM does not represent high-level language
features directly (so it cannot be used for some language-
dependent transformations), nor does it capture machine-
dependent features or code sequences used by back-end code
generators (it must be lowered to do so).

Because of the differing goals and representations, LLVM
is complementary to high-level virtual machines (e.g., Small-
Talk [18], Self [43], JVM [32], Microsoft’s CLI [33], and oth-
ers), and not an alternative to these systems. It differs from
these in three key ways. First, LLVM has no notion of high-
level constructs such as classes, inheritance, or exception-
handling semantics, even when compiling source languages
with these features. Second, LLVM does not specify a
runtime system or particular object model: it is low-level
enough that the runtime system for a particular language
can be implemented in LLVM itself. Indeed, LLVM can
be used to implement high-level virtual machines. Third,
LLVM does not guarantee type safety, memory safety, or
language interoperability any more than the assembly lan-
guage for a physical processor does.

The LLVM compiler framework exploits the code repre-
sentation to provide a combination of five capabilities that
we believe are important in order to support lifelong anal-
ysis and transformation for arbitrary programs. In general,
these capabilities are quite difficult to obtain simultaneously,
but the LLVM design does so inherently:

(1) Persistent program information: The compilation model
preserves the LLVM representation throughout an ap-
plication’s lifetime, allowing sophisticated optimiza-
tions to be performed at all stages, including runtime
and idle time between runs.

(2) Offline code generation: Despite the last point, it is
possible to compile programs into efficient native ma-
chine code offline, using expensive code generation
techniques not suitable for runtime code generation.
This is crucial for performance-critical programs.

(3) User-based profiling and optimization: The LLVM
framework gathers profiling information at run-time in
the field so that it is representative of actual users, and
can apply it for profile-guided transformations both at
run-time and in idle time?.

(4) Transparent runtime model: The system does not
specify any particular object model, exception seman-
tics, or runtime environment, thus allowing any lan-
guage (or combination of languages) to be compiled
using it.

(5) Uniform, whole-program compilation: Language-indep-
endence makes it possible to optimize and compile all
code comprising an application in a uniform manner
(after linking), including language-specific runtime li-
braries and system libraries.

!An idle-time optimizer has not yet been implemented in
LLVM.

We believe that no previous system provides all five of
these properties. Source-level compilers provide #2 and #4,
but do not attempt to provide #1, #3 or #5. Link-time
interprocedural optimizers [21, 5, 26], common in commer-
cial compilers, provide the additional capability of #1 and
#5 but only up to link-time. Profile-guided optimizers for
static languages provide benefit #2 at the cost of trans-
parency, and most crucially do not provide #3. High-level
virtual machines such as JVM or CLI provide #3 and par-
tially provide #1 and #b5, but do not aim to provide #4,
and either do not provide #2 at all or without #1 or #3.
Binary runtime optimization systems provide #2, #4 and
#5, but provide #3 only at runtime and to a limited extent,
and most importantly do not provide #1. We explain these
in more detail in Section 3.

We evaluate the effectiveness of the LLVM system with re-
spect to three issues: (a) the size and effectiveness of the rep-
resentation, including the ability to extract useful type infor-
mation for C programs; (b) the compiler performance (not
the performance of generated code which depends on the
particular code generator or optimization sequences used);
and (c) examples illustrating the key capabilities LLVM pro-
vides for several challenging compiler problems.

Our experimental results show that the LLVM compiler
can extract reliable type information for an average of 68%
of the static memory access instructions across a range of
SPECINT 2000 C benchmarks, and for virtually all the ac-
cesses in more disciplined programs. We also discuss based
on our experience how the type information captured by
LLVM is enough to safely perform a number of aggressive
transformations that would traditionally be attempted only
on type-safe languages in source-level compilers. Code size
measurements show that the LLVM representation is com-
parable in size to X86 machine code (a CISC architecture)
and roughly 25% smaller than RISC code on average, de-
spite capturing much richer type information as well as an
infinite register set in SSA form. Finally, we present exam-
ple timings showing that the LLVM representation supports
extremely fast interprocedural optimizations.

Our implementation of LLVM to date supports C and
C++, which are traditionally compiled entirely statically.
We are currently exploring whether LLVM can be beneficial
for implementing dynamic runtimes such as JVM and CLI.
LLVM is freely available under a non-restrictive license?.

The rest of this paper is organized as follows. Section 2
describes the LLVM code representation. Section 3 then
describes the design of the LLVM compiler framework. Sec-
tion 4 discusses our evaluation of the LLVM system as de-
scribed above. Section 5 compares LLVM with related pre-
vious systems. Section 6 concludes with a summary of the

paper.

2. PROGRAM REPRESENTATION

The code representation is one of the key factors that dif-
ferentiates LLVM from other systems. The representation is
designed to provide high-level information about programs
that is needed to support sophisticated analyses and trans-
formations, while being low-level enough to represent ar-
bitrary programs and to permit extensive optimization in
static compilers. This section gives an overview of the LLVM
instruction set and describes the language-independent type

2See the LLVM home-page: http://11lvm.cs.uiuc.edu/.

system, the memory model, exception handling mechanisms,
and the offline and in-memory representations. The detailed
syntax and semantics of the representation are defined in the
LLVM reference manual [29].

2.1 Overview of the LLVM Instruction Set

The LLVM instruction set captures the key operations of
ordinary processors but avoids machine-specific constraints
such as physical registers, pipelines, and low-level calling
conventions. LLVM provides an infinite set of typed virtual
registers which can hold values of primitive types (Boolean,
integer, floating point, and pointer). The virtual registers
are in Static Single Assignment (SSA) form [15]. LLVM
is a load/store architecture: programs transfer values be-
tween registers and memory solely via load and store op-
erations using typed pointers. The LLVM memory model is
described in Section 2.3.

The entire LLVM instruction set consists of only 31 op-
codes. This is possible because, first, we avoid multiple op-
codes for the same operations®. Second, most opcodes in
LLVM are overloaded (for example, the add instruction can
operate on operands of any integer or floating point operand
type). Most instructions, including all arithmetic and logi-
cal operations, are in three-address form: they take one or
two operands and produce a single result.

LLVM uses SSA form as its primary code representation,
i.e., each virtual register is written in exactly one instruc-
tion, and each use of a register is dominated by its definition.
Memory locations in LLVM are not in SSA form because
many possible locations may be modified at a single store
through a pointer, making it difficult to construct a rea-
sonably compact, explicit SSA code representation for such
locations. The LLVM instruction set includes an explicit
phi instruction, which corresponds directly to the standard
(non-gated) ¢ function of SSA form. SSA form provides a
compact def-use graph that simplifies many dataflow opti-
mizations and enables fast, flow-insensitive algorithms to
achieve many of the benefits of flow-sensitive algorithms
without expensive dataflow analysis. Non-loop transforma-
tions in SSA form are further simplified because they do
not encounter anti- or output dependences on SSA registers.
Non-memory transformations are also greatly simplified be-
cause (unrelated to SSA) registers cannot have aliases.

LLVM also makes the Control Flow Graph (CFG) of every
function explicit in the representation. A function is a set
of basic blocks, and each basic block is a sequence of LLVM
instructions, ending in exactly one terminator instruction
(branches, return, unwind, or invoke; the latter two are
explained later below). Each terminator explicitly specifies
its successor basic blocks.

2.2 Language-independent Type Information,
Cast, and GetElementPtr

One of the fundamental design features of LLVM is the in-
clusion of a language-independent type system. Every SSA
register and explicit memory object has an associated type,
and all operations obey strict type rules. This type informa-
tion is used in conjunction with the instruction opcode to
determine the exact semantics of an instruction (e.g. float-
ing point vs. integer add). This type information enables a
broad class of high-level transformations on low-level code

3For example, there are no unary operators: not and neg
are implemented in terms of xor and sub, respectively.

(for example, see Section 4.1.1). In addition, type mis-
matches are useful for detecting optimizer bugs.

The LLVM type system includes source-language-indep-
endent primitive types with predefined sizes (void, bool,
signed/unsigned integers from 8 to 64 bits, and single- and
double-precision floating-point types). This makes it possi-
ble to write portable code using these types, though non-
portable code can be expressed directly as well. LLVM also
includes (only) four derived types: pointers, arrays, struc-
tures, and functions. We believe that most high-level lan-
guage data types are eventually represented using some com-
bination of these four types in terms of their operational
behavior. For example, C++ classes with inheritance are
implemented using structures, functions, and arrays of func-
tion pointers, as described in Section 4.1.2.

Equally important, the four derived types above capture
the type information used even by sophisticated language-
independent analyses and optimizations. For example, field-
sensitive points-to analyses [25, 31], call graph construc-
tion (including for object-oriented languages like C++),
scalar promotion of aggregates, and structure field reorder-
ing transformations [12], only use pointers, structures, func-
tions, and primitive data types, while array dependence
analysis and loop transformations use all those plus array
types.

Because LLVM is language independent and must support
weakly-typed languages, declared type information in a legal
LLVM program may not be reliable. Instead, some pointer
analysis algorithm must be used to distinguish memory ac-
cesses for which the type of the pointer target is reliably
known from those for which it is not. LLVM includes such
an analysis described in Section 4.1.1. Our results show that
despite allowing values to be arbitrarily cast to other types,
reliable type information is available for a large fraction of
memory accesses in C programs compiled to LLVM.

The LLVM ‘cast’ instruction is used to convert a value of
one type to another arbitrary type, and is the only way to
perform such conversions. Casts thus make all type conver-
sions explicit, including type coercion (there are no mixed-
type operations in LLVM), explicit casts for physical sub-
typing, and reinterpreting casts for non-type-safe code. A
program without casts is necessarily type-safe (in the ab-
sence of memory access errors, e.g., array overflow [19]).

A critical difficulty in preserving type information for
low-level code is implementing address arithmetic. The
getelementptr instruction is used by the LLVM system to
perform pointer arithmetic in a way that both preserves type
information and has machine-independent semantics. Given
a typed pointer to an object of some aggregate type, this in-
struction calculates the address of a sub-element of the ob-
ject in a type-preserving manner (effectively a combined ¢.’
and ‘[] operator for LLVM). For example, the C statement
“X[i]l.a = 1;” could be translated into the pair of LLVM
instructions:

%p = getelementptr %xty* %X, long %i, ubyte 3;

store int 1, int* %p;
where we assume a is field number 3 within the structure
X[i], and the structure is of type %xty. Making all address
arithmetic explicit is important so that it is exposed to all
LLVM optimizations (most importantly, reassociation and
redundancy elimination); getelementptr achieves this with-
out obscuring the type information. Load and store instruc-
tions take a single pointer and do not perform any indexing,

which makes the processing of memory accesses simple and
uniform.

2.3 Explicit Memory Allocation and Unified
Memory Model

LLVM provides instructions for typed memory allocation.
The malloc instruction allocates one or more elements of
a specific type on the heap, returning a typed pointer to
the new memory. The free instruction releases memory al-
located through malloc*. The alloca instruction is similar
tomalloc except that it allocates memory in the stack frame
of the current function instead of the heap, and the mem-
ory is automatically deallocated on return from the function.
All stack-resident data (including “automatic” variables) are
allocated explicitly using alloca.

In LLVM, all addressable objects (“lvalues”) are explicitly
allocated. Global variable and function definitions define a
symbol which provides the address of the object, not the
object itself. This gives a unified memory model in which
all memory operations, including call instructions, occur
through typed pointers. There are no implicit accesses to
memory, simplifying memory access analysis, and the rep-
resentation needs no “address of” operator.

2.4 Function Calls and Exception Handling

For ordinary function calls, LLVM provides a call in-
struction that takes a typed function pointer (which may be
a function name or an actual pointer value) and typed ac-
tual arguments. This abstracts away the calling conventions
of the underlying machine and simplifies program analysis.

One of the most unusual features of LLVM is that it
provides an explicit, low-level, machine-independent mech-
anism to implement exception handling in high-level lan-
guages. In fact, the same mechanism also supports setjmp
and longjmp operations in C, allowing these operations to be
analyzed and optimized in the same way that exception fea-
tures in other languages are. The common exception mech-
anism is based on two instructions, invoke and unwind.

The invoke and unwind instructions together support
an abstract exception handling model logically based on
stack unwinding (though LLVM-to-native code generators
may use either “zero cost” table-driven methods [9] or
setjmp/longjmp to implement the instructions). invoke is
used to specify exception handling code that must be exe-
cuted during stack unwinding for an exception. unwind is
used to throw an exception or to perform a longjmp. We
first describe the mechanisms and then describe how they
can be used for implementing exception handling.

The invoke instruction works just like a call, but speci-
fies an extra basic block that indicates the starting block for
an unwind handler. When the program executes an unwind
instruction, it logically unwinds the stack until it removes
an activation record created by an invoke. It then transfers
control to the basic block specified by the invoke. These two
instructions expose exceptional control flow in the LLVM
CFG.

These two primitives can be used to implement a wide
variety of exception handling mechanisms. To date, we have
implemented full support for C’s setjmp/longjmp calls and

4When native code is generated for a program, malloc and
free instructions are converted to the appropriate native
function calls, allowing custom memory allocators to be
used.

the C++ exception model; in fact, both coexist cleanly in
our implementation [13]. At a call site, if some code must be
executed when an exception is thrown (for example, setjmp,
“catch” blocks, or automatic variable destructors in C++),
the code uses the invoke instruction for the call. When
an exception is thrown, this causes the stack unwinding to
stop in the current function, execute the desired code, then
continue execution or unwinding as appropriate.

{
AClass 0Obj;
func();

// Has a destructor
// Might throw; must execute destructor

Figure 1: C++ exception handling example

For example, consider Figure 1, which shows a case where
“cleanup code” needs to be generated by the C++ front-
end. If the ‘func()’ call throws an exception, C4++ guaran-
tees that the destructor for the Object object will be run.
To implement this, an invoke instruction is used to halt un-
winding, the destructor is run, then unwinding is continued
with the unwind instruction. The generated LLVM code is
shown in Figure 2. Note that a front-end for Java would use
similar code to unlock locks that are acquired through syn-
chronized blocks or methods when exceptions are thrown.

; Allocate stack space for object:

%0bj = alloca %AClass, uint 1

; Construct object:

call void %AClass::AClass(%AClass* %0bj)

; Call “‘func()’’:

invoke void %func() to label %0kLabel

unwind to label %ExceptionLabel

OkLabel:

; ... execution continues...
ExceptionLabel:

; If unwind occurs, excecution continues

; here. First, destroy the object:

call void %AClass::~AClass(%AClass* %0bj)

; Next, continue unwinding:

unwind

Figure 2: LLVM code for the C++ example. The handler
code specified by invoke executes the destructor.

A key feature of our approach is that the complex,
language-specific details of what code must be executed to
throw and recover from exceptions is isolated to the lan-
guage front-end and language-specific runtime library (so
it does not complicate the LLVM representation), but yet
the exceptional control-flow due to stack unwinding is en-
coded within the application code and therefore exposed in
a language-indepenent manner to the optimizer. The C++
exception handling model is very complicated, supporting
many related features such as try/catch blocks, checked ex-
ception specifications, function try blocks, etc., and reqiring
complex semantics for the dynamic lifetime of an exception
object. The C++ front-end supports these semantics by
generating calls to a simple runtime library.

For example, consider the expression ‘throw 1’. This con-
structs and throws an exception with integer type. The
generated LLVM code is shown in Figure 3. The example
code illustrates the key feature mentioned above. The run-
time handles all of the implementation-specific details, such
as allocating memory for exceptions®. Second, the runtime

SFor example, the implementation has to be careful to re-

; Allocate an exception object

%tl = call sbytex %__llvm_cxxeh_alloc_exc(uint 4)

%t2 = cast sbyte* %tl to intx*

; Construct the thrown value into the memory

store int 1, int* %t2

; ‘‘Throw’’ an integer expression, specifying the

; exception object, the typeid for the object, and

; the destructor for the exception (null for int).

call void %__llvm_cxxeh_throw(sbyte* Jt1,
<typeinfo for int>,
void (sbytex*)#* null)

unwind ; Unwind the stack.

Figure 3: LLVM code uses a runtime library for C++ ex-
ceptions support while exposing control-flow.

functions manipulate the thread-local state of the excep-
tion handling runtime, but don’t actually unwind the stack.
Because the calling code performs the stack unwind, the op-
timizer has a better view of the control flow of the function
without having to perform interprocedural analysis. This
allows LLVM to turn stack unwinding operations into direct
branches when the unwind target is the same function as the
unwinder (this often occurs due to inlining, for example).

Finally, try/catch blocks are implemented in a straight-
forward manner, using the same mechanisms and runtime
support. Any function call within the try block becomes an
invoke. Any throw within the try-block becomes a call to
the runtime library (as in the example above), followed by an
explicit branch to the appropriate catch block. The “catch
block” then uses the C++ runtime library to determine if
the top-level current exception is of one of the types that is
handled in the catch block. If so, it transfers control to the
appropriate block, otherwise it calls unwind to continue un-
winding. The runtime library handles the language-specific
semantics of determining whether the current exception is
of a caught type.

2.5 Plain-text, Binary, and In-memory Repre-
sentations

The LLVM representation is a first class language which
defines equivalent textual, binary, and in-memory (i.e., com-
piler’s internal) representations. The instruction set is de-
signed to serve effectively both as a persistent, offline code
representation and as a compiler internal representation,
with no semantic conversions needed between the two®. Be-
ing able to convert LLVM code between these representa-
tions without information loss makes debugging transfor-
mations much simpler, allows test cases to be written easily,
and decreases the amount of time required to understand
the in-memory representation.

3. COMPILER ARCHITECTURE

The goal of the LLVM compiler framework is to enable
sophisticated transformations at link-time, install-time, run-
time, and idle-time, by operating on the LLVM representa-
tion of a program at all stages. To be practical however,
it must be transparent to application developers and end-
users, and it must be efficient enough for use with real-world
applications. This section describes how the overall system

serve space for throwing std: :bad_alloc exceptions.

5In contrast, typical JVM implementations convert from the
stack-based bytecode language used offline to an appropriate
representation for compiler transformations, and some even
convert to SSA form for this purpose (e.g., [8]).

and the individual components are designed to achieve all
these goals.

3.1 High-Level Design of the LLVM Compiler
Framework

Figure 4 shows the high-level architecture of the LLVM
system. Briefly, static compiler front-ends emit code in the
LLVM representation, which is combined together by the
LLVM linker. The linker performs a variety of link-time op-
timizations, especially interprocedural ones. The resulting
LLVM code is then translated to native code for a given tar-
get at link-time or install-time, and the LLVM code is saved
with the native code. (It is also possible to translate LLVM
code at runtime with a just-in-time translator.) The native
code generator inserts light-weight instrumentation to de-
tect frequently executed code regions (currently loop nests
and traces, but potentially also functions), and these can be
optimized at runtime. The profile data collected at runtime
represent the end-user’s (not the developer’s) runs, and can
be used by an offline optimizer to perform aggressive profile-
driven optimizations in the field during idle-time, tailored to
the specific target machine.

This strategy provides five benefits that are not available
in the traditional model of static compilation to native ma-
chine code. We argued in the Introduction that these capa-
bilities are important for lifelong analysis and transforma-
tion, and we named them:

1. persistent program information,

2. offline code generation,

3. user-based profiling and optimization,
4. transparent runtime model, and

5. uniform, whole-program compilation.

These are difficult to obtain simultaneously for at least two
reasons. First, offline code generation (#2) normally does
not allow optimization at later stages on the higher-level
representation instead of native machine code (#1 and #3).
Second, lifelong compilation has traditionally been associ-
ated only with bytecode-based languages, which do not pro-
vide #4 and often not #2 or #5.

In fact, we noted in the Introduction that no existing com-
pilation approach provides all the capabilities listed above.
Our reasons are as follows:

e Traditional source-level compilers provide #2 and #4,
but do not attempt #1, #3 or #5. They do pro-
vide interprocedural optimization, but require signifi-
cant changes to application Makefiles.

e Several commercial compilers provide the additional
benefit of #1 and #b5 at link-time by exporting their
intermediate representation to object files [21, 5, 26]
and performing optimizations at link-time. No such
system we know of is also capable of preserving its
representation for runtime or idle-time use (benefits

#1 and #3).

e Higher-level virtual machines like JVM and CLI pro-
vide benefit #3 and partially provide #1 (in particu-
lar, they focus on runtime optimization, because the
need for bytecode verification greatly restricts the op-
timizations that may be done before runtime [3]). CLI
partially provides #5 because it can support code in
multiple languages, but any low-level system code and

Compiler FE 1

Offline Reoptimizef
______ A\ Y Plroffile
ile N1 Info

Compiler FE

Runtime
Optimizer

Figure 4: LLVM system architecture diagram

code in non-conforming languages is executed as “un-
managed code”. Such code is represented in native
form and not in the CLI intermediate representation,
so it is not exposed to CLI optimizations. These sys-
tems do not provide #2 with #1 or #3 because run-
time optimization is generally only possible when us-
ing JIT code generation. They do not aim to provide
#4, and instead provide a rich runtime framework for
languages that match their runtime and object model,
e.g., Java and C#. Omniware [1] provides #5 and
most of the benefits of #2 (because, like LLVM, it uses
a low-level represention that permits extensive static
optimization), but at the cost of not providing infor-
mation for high-level analysis and optimization (i.e.,
#1). It does not aim to provide #3 or #4.

e Transparent binary runtime optimization systems like
Dynamo and the runtime optimizers in Transmeta pro-
cessors provide benefits #2, #4 and #05, but they do
not provide #1. They provide benefit #3 only at run-
time, and only to a limited extent because they work
only on native binary code, limiting the optimizations
they can perform.

e Profile Guided Optimization for static languages pro-
vide benefit #3 at the cost of not being transparent
(they require a multi-phase compilation process). Ad-
ditionally, PGO suffers from three problems: (1) Em-
pirically, developers are unlikely to use PGO, except
when compiling benchmarks. (2) When PGO is used,
the application is tuned to the behavior of the train-
ing run. If the training run is not representative of the
end-user’s usage patterns, performance may not im-
prove and may even be hurt by the profile-driven opti-
mization. (3) The profiling information is completely
static, meaning that the compiler cannot make use of
phase behavior in the program or adapt to changing
usage patterns.

There are also significant limitations of the LLVM strat-
egy. First, language-specific optimizations must be per-
formed in the front-end before generating LLVM code.
LLVM is not designed to represent source languages types
or features directly. Second, it is an open question whether
languages requiring sophisticated runtime systems such as
Java can benefit directly from LLVM. We are currently ex-
ploring the potential benefits of implementing higher-level
virtual machines such as JVM or CLI on top of LLVM.

The subsections below describe the key components of
the LLVM compiler architecture, emphasizing design and
implementation features that make the capabilities above
practical and efficient.

3.2 Compile-Time: External front-end & static
optimizer

External static LLVM compilers (referred to as front-ends)
translate source-language programs into the LLVM virtual
instruction set. Each static compiler can perform three key
tasks, of which the first and third are optional: (1) Perform
language-specific optimizations, e.g., optimizing closures in
languages with higher-order functions. (2) Translate source
programs to LLVM code, synthesizing as much useful LLVM
type information as possible, especially to expose pointers,
structures, and arrays. (3) Invoke LLVM passes for global
or interprocedural optimizations at the module level. The
LLVM optimizations are built into libraries, making it easy
for front-ends to use them.

The front-end does not have to perform SSA construc-
tion. Instead, variables can be allocated on the stack (which
is not in SSA form), and the LLVM stack promotion and
scalar expansion passes can be used to build SSA form ef-
fectively. Stack promotion converts stack-allocated scalar
values to SSA registers if their address does not escape the
current function, inserting ¢ functions as necessary to pre-
serve SSA form. Scalar expansion precedes this and expands
local structures to scalars wherever possible, so that their
fields can be mapped to SSA registers as well.

Note that many “high-level” optimizations are not really
language-dependent, and are often special cases of more
general optimizations that may be performed on LLVM
code. For example, both virtual function resolution for
object-oriented languages (described in Section 4.1.2) and
tail-recursion elimination which is crucial for functional lan-
guages can be done in LLVM. In such cases, it is better to
extend the LLVM optimizer to perform the transformation,
rather than investing effort in code which only benefits a
particular front-end. This also allows the optimizations to
be performed throughout the lifetime of the program.

3.3 Linker & Interprocedural Optimizer

Link time is the first phase of the compilation process
where most” of the program is available for analysis and
transformation. As such, link-time is a natural place to
perform aggressive interprocedural optimizations across the
entire program. The link-time optimizations in LLVM oper-
ate on the LLVM representation directly, taking advantage
of the semantic information it contains. LLVM currently
includes a number of interprocedural analyses, such as a
context-sensitive points-to analysis (Data Structure Anal-
ysis [31]), call graph construction, and Mod/Ref analy-
sis, and interprocedural transformations like inlining, dead
global elimination, dead argument elimination, dead type
elimination, constant propagation, array bounds check elim-
ination [28], simple structure field reordering, and Auto-

"Note that shared libraries and system libraries may not
be available for analysis at link time, or may be compiled
directly to native code.

matic Pool Allocation [30].

The design of the compile- and link-time optimizers in
LLVM permit the use of a well-known technique for speed-
ing up interprocedural analysis. At compile-time, interpro-
cedural summaries can be computed for each function in the
program and attached to the LLVM bytecode. The link-
time interprocedural optimizer can then process these inter-
procedural summaries as input instead of having to com-
pute results from scratch. This technique can dramatically
speed up incremental compilation when a small number of
translation units are modified [7]. Note that this is achieved
without building a program database or deferring the com-
pilation of the input source code until link-time.

3.4 Offline or JIT Native Code Generation

Before execution, a code generator is used to translate
from LLVM to native code for the target platform (we cur-
rently support the Sparc V9 and x86 architectures), in one
of two ways. In the first option, the code generator is run
statically at link time or install time, to generate high per-
formance native code for the application, using possibly ex-
pensive code generation techniques. If the user decides to
use the post-link (runtime and offline) optimizers, a copy
of the LLVM bytecode for the program is included into the
executable itself. In addition, the code generator inserts
light-weight instrumentation into the program to identify
frequently executed regions of code.

Alternatively, a just-in-time Execution Engine can be used
which invokes the appropriate code generator at runtime,
translating one function at a time for execution (or uses
the portable LLVM interpreter if no native code generator
is available). The JIT translator can also insert the same
instrumentation as the offline code generator.

3.5 Runtime Path Profiling & Reoptimization

One of the goals of the LLVM project is to develop a new
strategy for runtime optimization of ordinary applications.
Although that work is outside the scope if this paper, we
briefly describe the strategy and its key benefits.

As a program executes, the most frequently executed ex-
ecution paths are identified through a combination of of-
fline and online instrumentation [39]. The offline instru-
mentation (inserted by the native code generator) identifies
frequently executed loop regions in the code. When a hot
loop region is detected at runtime, a runtime instrumenta-
tion library instruments the executing native code to iden-
tify frequently-executed paths within that region. Once hot
paths are identified, we duplicate the original LLVM code
into a trace, perform LLVM optimizations on it, and then
regenerate native code into a software-managed trace cache.
We then insert branches between the original code and the
new native code.

The strategy described here is powerful because it com-
bines the following three characteristics: (a) Native code
generation can be performed ahead-of-time using sophisti-
cated algorithms to generate high-performance code. (b)
The native code generator and the runtime optimizer can
work together since they are both part of the LLVM frame-
work, allowing the runtime optimizer to exploit support
from the code generator (e.g., for instrumentation and sim-
plifying transformations). (c) The runtime optimizer can
use high-level information from the LLVM representation to
perform sophisticated runtime optimizations.

We believe these three characteristics together represent
one “optimal” design point for a runtime optimizer because
they allow the best choice in three key aspects: high-quality
initial code generation (offline rather than online), coopera-
tive support from the code-generator, and the ability to per-
form sophisticated analyses and optimizations (using LLVM
rather than native code as the input).

3.6 Offline Reoptimization with End-user Pro-
file Information

Because the LLVM representation is preserved perma-
nently, it enables transparent offline optimization of appli-
cations during idle-time on an end-user’s system. Such an
optimizer is simply a modified version of the link-time inter-
procedural optimizer, but with a greater emphasis on profile-
driven and target-specific optimizations.

An offline, idle-time reoptimizer has several key benefits.
First, as noted earlier, unlike traditional profile-guided op-
timizers (i.e., compile-time or link-time ones), it can use
profile information gathered from end-user runs of the ap-
plication. It can even reoptimize an application multiple
times in response to changing usage patterns over time (or
optimize differently for users with differing patterns). Sec-
ond, it can tailor the code to detailed features of a single
target machine, whereas traditional binary distributions of
code must often be run on many different machine config-
urations with compatible architectures and operating sys-
tems. Third, unlike the runtime optimizer (which has both
the previous benefits), it can perform much more aggressive
optimizations because it is run offline.

Nevertheless, runtime optimization can further improve
performance because of the ability to perform optimiza-
tions based on runtime values as well as path-sensitive opti-
mizations (which can cause significant code growth if done
aggressively offline), and to adaptively optimize code for
changing execution behavior within a run. For dynamic,
long-running applications, therefore, the runtime and offline
reoptimizers could coordinate to ensure the highest achiev-
able performance.

4. APPLICATIONS AND EXPERIENCES

Sections 2 and 3 describe the design of the LLVM code
representation and compiler architecture. In this section,
we evaluate this design in terms of three categories of issues:
(a) the characteristics of the representation; (b) the speed of
performing whole-program analyses and transformations in
the compiler; and (c) illustrative uses of the LLVM system
for challenging compiler problems, focusing on how the novel
capabilities in LLVM benefit these uses.

4.1 Representation Issues

We evaluate three important characteristics of the LLVM
representation. First, a key aspect of the representation is
the language-independent type system. Does this type sys-
tem provide any useful information when it can be violated
with casts? Second, how do high-level language features
map onto the LLVM type system and code representation?
Third, how large is the LLVM representation when written
to disk?

4.1.1 What value does type information provide?

Reliable type information about programs can enable the
optimizer to perform aggressive transformations that would

be difficult otherwise, such as reordering two fields of a
structure or optimizing memory management [12, 30]. As
noted in Section 2.2, however, declared type information in
LLVM is not reliable and some analysis (typically including
a pointer analysis) must check the declared type informa-
tion before it can be used. A key question is how much
reliable type information is available in programs compiled
to LLVM?

LLVM includes a flow-insensitive, field-sensitive and context-

sensitive points-to analysis called Data Structure Analysis
(DSA) [31]. Several transformations in LLVM are based on
DSA, including Automatic Pool Allocation [30]). As part of
the analysis, DSA extracts LLVM types for a subset of mem-
ory objects in the program. It does this by using declared
types in the LLVM code as speculative type information, and
checks conservatively whether memory accesses to an object
are consistent with those declared types® (note that it does
not perform any type-inference or enforce type safety).

For a wide range of benchmarks, we measured the fraction
of static load and store operations for which reliable type
information about the accessed objects is available using
DSA. Table 1 shows this statistic for the C benchmarks in
SPEC CPU2000. Benchmarks written in a more disciplined
style, (e.g., the Olden and Ptrdist benchmarks) had nearly
perfect results, scoring close to 100% in most cases.

Benchmark Typed | Untyped Typed
Name Accesses | Accesses | Percent
164.gzip 1654 61 96.4%
175.vpr 4038 371 91.6%
176.gcc 25747 33179 43.7%
177.mesa 2811 19668 12.5%
179.art 572 0 100.0%
181.mcf 571 0 100.0%
183.equake 799 114 87.5%
186.crafty 9734 383 96.2%
188.ammp 2109 2598 44.8%
197.parser 1577 2257 41.1%
253.perlbmk 9678 22302 30.3%
254.gap 6432 15117 29.8%
255.vortex 13397 8915 60.0%
256.bzip2 1011 52 95.1%
300.twolf 13028 1196 91.6%
average 68.04%

Table 1: Loads and Stores which are provably typed

The table shows that many of these programs (164, 175,
179, 181, 183, 186, 256, & 300) have a surprisingly high pro-
portion of memory accesses with reliable type information,
despite using a language that does not encourage disciplined
use of types. The leading cause of loss of type information in
the remaining programs is the use of custom memory alloca-
tors (in 197, 254, & 255), inherently non-type-safe program
constructs such as using different structure types for the
same objects in different places (176, 253 & 254) and impre-
cision due to DSA (in 177 & 188). Overall, despite the use
of custom allocators, casting to and from void*, and other
C tricks, DSA is still able to verify the type information for
an average of 68% of accesses across these programs.

It is important to note that similar results would be very
difficult to obtain if LLVM had been an untyped representa-

8DSA is actually quite aggressive: it can often extract
type information for objects stored into and loaded out of
“generic” void* data structure, despite the casts to and from
voidx.

tion. Intuitively, checking that declared types are respected
is much easier than inferring those types, for structure and
array types in a low-level code representation. As an exam-
ple, an earlier version of the LLVM C front-end was based
on GCC’s RTL internal representation, which provided lit-
tle useful type information, and both DSA and pool alloca-
tion were much less effective. Our new C/C++ front-end
is based on the GCC Abstract Syntax Tree representation,
which makes much more type information available.

4.1.2 How do high-level features map onto LLVM?

Compared to source languages, LLVM is a much lower
level representation. Even C, which itself is quite low-level,
has many features which must be lowered by a compiler
targeting LLVM. For example, complex numbers, struc-
ture copies, unions, bit-fields, variable sized arrays, and
setjmp/longjmp all must be lowered by an LLVM C com-
piler. In order for the representation to support effective
analyses and transformations, the mapping from source-
language features to LLVM should capture the high-level
operational behavior as cleanly as possible.

We discuss this issue by using C++ as an example, since
it is the richest language for which we have an implemented
front-end. We believe that all the complex, high-level fea-
tures of C++ are expressed clearly in LLVM, allowing their
behavior to be effectively analyzed and optimized:

e Implicit calls (e.g. copy constructors) and parameters
(e.g. ‘this’ pointers) are made explicit.

e Templates are fully instantiated by the C++ front
end before LLVM code is generated. (True poly-
morphic types in other languages would be expanded
into equivalent code using non-polymorphic types in
LLVM.)

e Base classes are expanded into nested structure types.
For this C++ fragment:

class basel { int Y; };
class base2 { float X; };
class derived : basel, base2 { short Z; };

the LLVM type for class derivedis ‘{ {int}, {float}
short }’. If the classes have virtual functions, a v-
table pointer would also be included and initialized at
object allocation time to point to the virtual function
table, described below.

e A virtual function table is represented as a global, con-
stant array of typed function pointers, plus the type-id
object for the class. With this representation, virtual
method call resolution can be performed by the LLVM
optimizer as effectively as by a typical source compiler
(more effectively if the source compiler uses only per-
module instead of cross-module pointer analysis).

e C++ exceptions are lowered to the ‘invoke’ and
‘unwind’ instructions as described in Section 2.4, ex-
posing exceptional control flow in the CFG. In fact,
having this information available at link time enables
LLVM to use an interprocedural analysis to eliminate
unused exception handlers. This optimization is much
less effective if done on a per-module basis in a source-
level compiler.

We believe that similarly clean LLVM implementations
exist for most constructs in other language families like
Scheme, the ML family, SmallTalk, Java and Microsoft CLI.
We aim to explore these issues in the future, and prelimi-
nary work is underway on the implementation of JVM and
OCaml front-ends.

4.1.3 How compact is the LLVM representation?

Since code for the compiled program is stored in the
LLVM representation throughout its lifetime, it is impor-
tant that it not be too large. The flat, three-address form of
LLVM is well suited for a simple linear layout, with most in-
structions requiring only a single 32-bit word each in the file.
Figure 5 shows the size of LLVM files for SPEC CPU2000
executables after linking, compared to native X86 and 32-
bit Sparc executables compiled by GCC 3.3 at optimization
level -O3.

2500
2250 i
2000
1750
1500
1250
[LLvm
1000 W xs6
750 ’77D5parc
500
250
O,jﬂl ‘ mmm“ ;ﬂ,J_I
T e e o o~~~ ~ 2 - S H N N ow
@ N N N N ® ® ® ® © uou un oun o <
A 1 O N O B W O 0 N W A~ U1 O O @

Figure 5: Executable sizes for LLVM, X86, Sparc (in KB)

The figure shows that LLVM code is about the same size
as native X86 executables (a denser, variable-size instruction
set), and significantly smaller than SPARC (a traditional
32-bit instruction RISC machine). We believe this is a very
good result given that LLVM encodes an infinite register set,
rich type information, control flow information, and data-
flow (SSA) information that native executables do not.

Currently, large programs are encoded less efficiently than
smaller ones because they have a larger set of register values
available at any point, making it harder to fit instructions
into a 32-bit encoding. When an instruction does not fit
into a 32-bit encoding, LLVM falls back on a 64-bit or larger
encoding, as needed. Though it would be possible to make
the fall back case more efficient, we have not attempted to
do so. Also, as with native executables, general purpose file
compression tools (e.g. bzip2) are able to reduce the size
of bytecode files to about 50% of their uncompressed size,
indicating substantial margin for improvement.

4.1.4 How fastis LLVM?

An important aspect of LLVM is that the low-level rep-
resentation enables efficient analysis and transformation,
because of the small, uniform instruction set, the explicit
CFG and SSA representations, and careful implementation
of data structures. This speed is important for uses “late”
in the compilation process (i.e., at link-time or run-time).
In order to provide a sense for the speed of LLVM, Table 2

shows the table of runtimes for several interprocedural op-
timizations. All timings were collected on a 3.06GHz Intel
Xeon processor. The LLVM compiler system was compiled
using the GCC 3.3 compiler at optimization level -O3.

Benchmark [| DGE | DAE | inline GCC
164.gzip 0.001I8 | 0.0063 | 0.0127 1.937
175.vpr 0.0096 | 0.0082 | 0.0564 5.804
176.gcc 0.0496 | 0.1058 | 0.6455 || 55.436
177.mesa 0.0051 | 0.0312 | 0.0788 || 20.844
179.art 0.0002 | 0.0007 | 0.0085 0.591
181.mcf 0.0010 | 0.0007 | 0.0174 1.193
183.equake 0.0000 | 0.0009 | 0.0100 0.632
186.crafty 0.0016 | 0.0162 | 0.0531 9.444
188.ammp 0.0200 | 0.0072 | 0.1085 5.663
197.parser 0.0021 | 0.0096 | 0.0516 5.593
253.perlbmk 0.0137 | 0.0439 | 0.8861 || 25.644
254.gap 0.0065 | 0.0384 | 0.1317 || 18.250
255.vortex 0.1081 | 0.0539 | 0.2462 || 20.621
256.bzip2 0.0015 | 0.0028 | 0.0122 1.520
300.twolf 0.0712 | 0.0152 | 0.1742 || 11.986

Table 2: Interprocedural optimization timings (in seconds)

The table includes numbers for several transformations:
DGE (aggressive’ Dead Global variable and function Elim-
ination), DAE (aggressive Dead Argument and return value
Elimination), and inline (a function integration pass). All
these interprocedural optimizations work on the whole pro-
gram at link-time. In addition, they spend most of their time
traversing and modifying the code representation directly,
so they reflect the costs of processing the representation. 1°
As a reference for comparison, the GCC column indicates
the total time the GCC 3.3 compiler takes to compile the
program at -O3.

We find that in all cases, the optimization time is sub-
stantially less than that to compile the program with GCC,
despite the fact that GCC does no cross module optimiza-
tion, and very little interprocedural optimization within a
translation unit. In addition, the interprocedural optimiza-
tions scale mostly linear with the number of transformations
they perform. For example, DGE eliminates 331 functions
and 557 global variables (which include string constants)
from 255.vortex, DAE eliminates 103 arguments and 96 re-
turn values from 176.gcc, and ‘inline’ inlines 1368 functions
(deleting 438 which are no longer referenced) in 176.gcc.

4.2 Applications using life-time analysis and
optimization capabilities of LLVM

Finally, to illustrate the capabilities provided by the com-
piler framework, we briefly describe three examples of how
LLVM has been used for widely varying compiler problems,
emphasizing some of the novel capabilities described in the
introduction.

4.2.1 Projects using LLVM as a general compiler

infrastructure

As noted earlier, we have implemented several compiler
techniques in LLVM. The most aggressive of these are

Y«Aggressive” DCEs assume objects are dead until proven
otherwise, allowing dead objects with cycles to be deleted.

YYDSA (Data Structure Analysis) is a much more complex

analysis, and it spends a negligible fraction of its time pro-
cessing the code representation itself, so its run times are not
indicative of the efficiency of the representation. It is inter-
esting to note, however, that those times also are relatively
fast compared with GCC compile times [31].

Data Structure Analysis (DSA) and Automatic Pool Allo-
cation [30], which analyze and transform programs in terms
of their logical data structures. These techniques inherit
a few significant benefits from LLVM, especially, (a) these
techniques are only effective if most of the program is avail-
able, i.e., at link-time; (b) type information is crucial for
their effectiveness, especially pointers and structures; (c) the
techniques are source-language independent; and (d) SSA
significantly improves the precision of DSA, which is flow-
insensitive.

Other researchers not affiliated with our group have been
actively using or exploring the use of the LLVM compiler
framework, in a number of different ways. These include
using LLVM as an intermediate representation for binary-
to-binary transformations, as a compiler back-end to sup-
port a hardware-based trace cache and optimization system,
as a basis for runtime optimization and adaptation of Grid
programs, and as an implementation platform for a novel
programming language.

4.2.2 SAFECode: A safe low-level representation

and execution environment

SAFECode is a “safe” code representation and execution
environment, based on a type-safe subset of LLVM. The goal
of the work is to enforce memory safety of programs in the
SAFECode representation through static analysis, by using
a variant of automatic pool allocation instead of garbage col-
lection [19], and using extensive interprocedural static anal-
ysis to minimize runtime checks [28, 19].

The SAFECode system exploits nearly all capabilities of
the LLVM framework, except runtime optimization. It di-
rectly uses the LLVM code representation, which provides
the ability to analyze C and C++ programs, which is crucial
for supporting embedded software, middle-ware, and sys-
tem libraries. SAFECode relies on the type information in
LLVM (with no syntactic changes) to check and enforce type
safety. It relies on the array type information in LLVM to
enforce array bounds safety, and uses interprocedural anal-
ysis to eliminate runtime bounds checks in many cases [28].
It uses interprocedural safety checking techniques, exploit-
ing the link-time framework to retain the benefits of separate
compilation (a key difficulty that led previous such systems
to avoid using interprocedural techniques [17, 23]).

4.2.3 External ISA design for Virtual Instruction Set

Computers

Virtual Instruction Set Computers [40, 16, 2] are proces-
sor designs that use two distinct instruction sets: an exter-
nally visible, virtual instruction set (V-ISA) which serves
as the program representation for all software, and a hid-
den implementation-specific instruction set (I-ISA) that is
the actual hardware ISA. A software translator co-designed
with the hardware translates V-ISA code to the I-ISA trans-
parently for execution, and is the only software that is aware
of the I-ISA. This translator is essentially a sophisticated,
implementation-specific back-end compiler.

In recent work, we argued that an extended version of the
LLVM instruction set could be a good choice for the external
V-ISA for such processor designs [2]. We proposed a novel
implementation strategy for the virtual-to-native translator
that enables offline code translation and caching of trans-
lated code in a completely OS-independent manner.

That work exploits the important features of the instruc-

tion set representation, and extends it to be suitable as a
V-ISA for hardware. The fundamental benefit of LLVM
for this work is that the LLVM code representation is low-
level enough to represent arbitrary external software (in-
cluding operating system code), yet provides rich enough
information to support sophisticated compiler techniques in
the translator. A second key benefit is the ability to do both
offline and online translation, which is exploited by the OS-
independent translation strategy.

5. RELATED WORK

We focus on comparing LLVM with three classes of pre-
vious work: other virtual-machine-based compiler systems,
research on typed assembly languages, and link-time or dy-
namic optimization systems.

As noted in the introduction, the goals of LLVM are com-
plementary to those of higher-level language virtual ma-
chines such as SmallTalk, Self, JVM, and the managed mode
of Microsoft CLI. High-level virtual machines such as these
require a particular object model and runtime system for
use. This implies that they can provide higher-level type
information about the program, but are not able to sup-
port languages that do not match their design (even object-
oriented languages such as C++). Additionally, programs in
these representations (except CLI) are required to be type-
safe. This is important for supporting mobile code, but
makes these virtual machines insufficient for non-type-safe
languages and for low-level system code. It also significantly
limits the amount of optimization that can be done before
runtime because of the need for bytecode verification.

The Microsoft CLI virtual machine has a number of fea-
tures that distinguish it from other high-level virtual ma-
chines, including explicit support for a wide range of features
from multiple languages, language interoperability support,
non-type-safe code, and “unmanaged” execution mode. Un-
managed mode allows CLI to represent code in arbitrary lan-
guages, including those that do not conform to its type sys-
tem or runtime framework, e.g., ANSI-standard C++ [34].
However, code in unmanaged mode is not represented in
the CLI intermediate representation (MSIL), and therefore
is not subject to dynamic optimization in CLI. In con-
trast, LLVM allows code from arbitrary languages to be
represented in a uniform, rich representation and optimized
throughout the lifetime of the code. A second key difference
is that LLVM lacks the interoperability features of CLI but
also does not require source-languages to match the runtime
and object model for interoperability. Instead, it requires
source-language compilers to manage interoperability, but
then allows all such code to be exposed to LLVM optimizers
at all stages.

The Omniware virtual machine [1] is closer to LLVM, be-
cause they use an abstract low-level RISC architecture and
can support arbitrary code (including non-type-safe code)
from any source language. However, the Omniware instruc-
tion set lacks the higher-level type information of LLVM.
In fact, it allows (and requires) source compilers to choose
data layouts, perform address arithmetic, and perform reg-
ister allocation (to a small set of virtual registers). All these
features make it difficult to perform any sophisticated analy-
sis on the resulting Omniware code. These differences from
LLVM arise because the goals of their work are primarily
to provide code mobility and safety, not a basis for lifelong
code optimization. Their virtual machine compiles Omni-

ware code to native code at runtime, and performs only
relatively simple optimizations plus some stronger machine-
dependent optimizations.

Kistler and Franz describe a compilation architecture for
performing optimization in the field, using simple initial
load-time code generation, followed by profile-guided run-
time optimization [27]. Their system targets the Oberon
language, uses Slim Binaries [22] as its code representation,
and provides type safety and memory management similar
to other high-level virtual machines. They do not attempt
to support arbitrary languages or to use a transparent run-
time system, as LLVM does. They also do not propose doing
static or link-time optimization.

There has been a wide range of work on typed intermedi-
ate representations. Functional languages often use strongly
typed intermediate languages (e.g. [38]) as a natural exten-
sion of the source language. Projects on typed assembly lan-
guages (e.g., TAL [35] and LTAL [10]) focus on preserving
high-level type information and type safety during compi-
lation and optimizations. The SafeTSA [3] representation
is a combination of type information with SSA form, which
aims to provide a safe but more efficient representation than
JVM bytecode for Java programs. In contrast, the LLVM
virtual instruction set does not attempt to preserve type
safety of high-level languages, to capture high-level type in-
formation from such languages, or to enforce code safety
directly (though it can be used to do so [19]). Instead, the
goal of LLVM is to enable sophisticated analyses and trans-
formations beyond static compile time.

There have been attempts to define a unified, generic, in-
termediate representation. These have largely failed, rang-
ing from the original UNiversal Computer Oriented Lan-
guage [42] (UNCOL), which was discussed but never im-
plemented, to the more recent Architecture and language
Neutral Distribution Format [4] (ANDF), which was im-
plemented but has seen limited use. These unified repre-
sentations attempt to describe programs at the AST level,
by including features from all supported source languages.
LLVM is much less ambitious and is more like an assembly
language: it uses a small set of types and low-level opera-
tions, and the “implementation” of high-level language fea-
tures is described in terms of these types. In some ways,
LLVM simply appears as a strict RISC architecture.

Several systems perform interprocedural optimization at
link-time. Some operate on assembly code for a given
processor [36, 41, 14, 37] (focusing primarily on machine-
dependent optimizations), while others export additional in-
formation from the static compiler, either in the form of an
IR or annotations [44, 21, 5, 26]. None of these approaches
attempt to support optimization at runtime or offline after
software is installed in the field, and it would be difficult to
directly extend them to do so.

There have also been several systems that perform trans-
parent runtime optimization of native code [6, 20, 16]. These
systems inherit all the challenges of optimizing machine-
level code [36] in addition to the constraint of operating
under the tight time constraints of runtime optimization.
In contrast, LLVM aims to provide type, dataflow (SSA)
information, and an explicit CFG for use by runtime opti-
mizations. For example, our online tracing framework (Sec-
tion 3.5) directly exploits the CFG at runtime to perform
limited instrumentation of hot loop regions. Finally, none
of these systems supports link-time, install-time, or offline

optimizations, with or without profile information.

6. CONCLUSION

This paper has described LLVM, a system for performing
lifelong code analysis and transformation, while remaining
transparent to programmers. The system uses a low-level,
typed, SSA-based instruction set as the persistent represen-
tation of a program, but without imposing a specific run-
time environment. The LLVM representation is language
independent, allowing all the code for a program, including
system libraries and portions written in different languages,
to be compiled and optimized together. The LLVM com-
piler framework is designed to permit optimization at all
stages of a software lifetime, including extensive static op-
timization, online optimization using information from the
LLVM code, and idle-time optimization using profile infor-
mation gathered from programmers in the field. The current
implementation includes a powerful link-time global and in-
terprocedural optimizer, a low-overhead tracing technique
for runtime optimization, and Just-In-Time and static code
generators.

We showed experimentally and based on experience that
LLVM makes available extensive type information even for
C programs, which can be used to safely perform a number
of aggressive transformations that would normally be at-
tempted only on type-safe languages in source-level compil-
ers. We also showed that the LLVM representation is com-
parable in size to X86 machine code and about 25% smaller
than SPARC code on average, despite capturing much richer
type information as well as an infinite register set in SSA
form. Finally, we gave several examples of whole-program
optimizations that are very efficient to perform on the LLVM
representation. A key question we are exploring currently is
whether high-level language virtual machines can be imple-
mented effectively on top of the LLVM runtime optimization
and code generation framework.

7. REFERENCES

[1] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and
R. Wahbe. Efficient and language-independent mobile
programs. In Proc. ACM SIGPLAN 1996 Conference
on Programming Language Design and
Implementation, pages 127-136. ACM Press, 1996.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and
B. Gaeke. LLVA: A Low-level Virtual Instruction Set
Architecture. In 36" Int’l Symp. on Microarchitecture,
pages 205-216, San Diego, CA, Dec 2003.

[3] W. Amme, N. Dalton, J. von Ronne, and M. Franz.
SafeTSA: A type safe and referentially secure
mobile-code representation based on static single
assignment form. In PLDI, June 2001.

[4] ANDF Consortium. The Architectural Neutral
Distribution Format. http://www.andf.org/.

[5] A. Ayers, S. de Jong, J. Peyton, and R. Schooler.
Scalable cross-module optimization. ACM SIGPLAN
Notices, 33(5):301-312, 1998.

[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In PLDI,
pages 1-12, June 2000.

[7] M. Burke and L. Torczon. Interprocedural
optimization: eliminating unnecessary recompilation.
Trans. Prog. Lang. and Sys, 15(3):367-399, 1993.

8]

[9]

[10]

[13]

[14]

[15]

[16]

[17]

18]

[20]

[21]

22]

[23]

[24]

[25]

[26]

M. G. Burke et al. The Jalapefio Dynamic Optimizing
Compiler for Java. In Java Grande, pages 129-141,
1999.

D. Chase. Implementation of exception handling. The
Journal of C Language Translation, 5(4):229-240,
June 1994.

J. Chen, D. Wu, A. W. Appel, and H. Fang. A
provably sound TAL for back-end optimization. In
PLDI, San Diego, CA, Jun 2003.

A. Chernoff, et al. FX!32: A profile-directed binary
translator. IEEE Micro, 18(2):56-64, 1998.

T. M. Chilimbi, B. Davidson, and J. R. Larus.
Cache-conscious structure definition. In ACM Symp.
on Prog. Lang. Design and Implemenation, Atlanta,
GA, May 1999.

CodeSourcery, Compagq, et al. C++ ABI for Itanium.
http://www.codesourcery.com/cxx-abi/abi.html,
2001.

R. Cohn, D. Goodwin, and P. Lowney. Optimizing
Alpha executables on Windows NT with Spike. Digital
Technical Journal, 9(4), 1997.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
Trans. Prog. Lang. and Sys., pages 13(4):451-490,
October 1991.

J. C. Dehnert, et al. The Transmeta Code Morphing
Software: Using speculation, recovery and adaptive
retranslation to address real-life challenges. In 1%*
IEEE/ACM Symp. Code Generation and
Optimization, San Francisco, CA, Mar 2003.

R. DeLine and M. Fahndrich. Enforcing high-level
protocols in low-level software. In PLDI, Snowbird,
UT, June 2001.

L. P. Deutsch and A. M. Schiffman. Efficient
implementation of the smalltalk-80 system. In 11th
Symp. on Principles of Programming Languages,
pages 297-301, Jan 1984.

D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner.
Memory safety without runtime checks or garbage
collection. In Languages, Compilers, and Tools for
Embedded Systems (LCTES), San Diego, Jun 2003.
K. Ebcioglu and E. R. Altman. DAISY: Dynamic
compilation for 100% architectural compatibility. In
ISCA, pages 26-37, 1997.

M. F. Fernandez. Simple and effective link-time
optimization of Modula-3 programs. ACM SIGPLAN
Notices, 30(6):103-115, 1995.

M. Franz and T. Kistler. Slim binaries.
Communications of the ACM, 40(12), 1997.

D. Grossman, G. Morrisett, T. Jim, M. Hicks,

Y. Wang, and J. Cheney. Region-based memory
management in cyclone. In PLDI, Berlin, Germany,
June 2002.

D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive ¢ and c++ memory leak
detector. In PLDI, pages 168-181, 2003.

M. Hind. Which pointer analysis should i use? In Int’l
Symp. on Software Testing and Analysis, 2000.

IBM Corp. XL FORTRAN: Eight Ways to Boost
Performance. White Paper, 2000.

27]

(28]

34]

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]
(43]

[44]

T. Kistler and M. Franz. Continuous program
optimization: A case study. ACM Trans. on Prog.
Lang. and Sys., 25(4):500-548, Jul 2003.

S. Kowshik, D. Dhurjati, and V. Adve. Ensuring code
safety without runtime checks for real-time control
systems. In Compilers, Architecture and Synthesis for
Embedded Systems (CASES), Grenoble, Oct 2002.

C. Lattner and V. Adve. LLVM Language Reference
Manual.

http://1lvm.cs.uiuc.edu/docs/LangRef .html.

C. Lattner and V. Adve. Automatic Pool Allocation
for Disjoint Data Structures. In Proc. ACM SIGPLAN
Workshop on Memory System Performance, Berlin,
Germany, Jun 2002.

C. Lattner and V. Adve. Data Structure Analysis: A
Fast and Scalable Context-Sensitive Heap Analysis.
Tech. Report UIUCDCS-R-2003-2340, Computer
Science Dept., Univ. of Illinois at Urbana-Champaign,
Apr 2003.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, 1997.

E. Meijer and J. Gough. A technical overview of the
Commmon Language Infrastructure, 2002.
http://research.microsoft.com/&meijer/
Papers/CLR.pdf.

Microsoft Corp. Managed extensions for c++
specification. .NET Framework Compiler and
Language Reference.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From
System F to typed assembly language. Trans. Prog.
Lang. and Systems, 21(3):528-569, May 1999.

R. Muth. Alto: A Platform for Object Code
Modification. Ph.d. Thesis, Department of Computer
Science, University of Arizona, 1999.

T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong,
H. Levy, B. Bershad, and B. Chen. Instrumentation
and optimization of Win32/Intel executables using
Etch. In Proc. USENIX Windows NT Workshop,
August 1997.

Z. Shao, C. League, and S. Monnier. Implementing
Typed Intermediate Languages. In Int’l Conf. on
Functional Prog., pages 313-323, 1998.

A. Shukla. Lightweight, cross-procedure tracing for
runtime optimization. Master’s thesis, Comp. Sci.
Dept., Univ. of Illinois at Urbana-Champ aign,
Urbana, IL, Aug 2003.

J. E. Smith, T. Heil, S. Sastry, and T. Bezenek.
Achieving high performance via co-designed virtual
machines. In Int’l Workshop on Innovative
Architecture (IWIA), 1999.

A. Srivastava and D. W. Wall. A practical system for
intermodule code optimization at link-time. Journal of
Programming Languages, 1(1):1-18, Dec. 1992.

T. Steel. Uncol: The myth and the fact. Annual
Review in Automated Programming 2, 1961.

D. Ungar and R. B. Smith. Self: The power of
simplicity. In OOPSLA, 1987.

D. Wall. Global register allocation at link-time. In
Proc. SIGPLAN ’86 Symposium on Compiler
Construction, Palo Alto, CA, 1986.

