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Abstract

Virtual machine migration greatly aids management by al-
lowing flexible provisioning of resources and decommission-
ing of hardware for maintenance. However, efforts to im-
prove network performance by granting virtual machines di-
rect access to hardware currently prevent migration. This oc-
curs because (1) the VMM cannot migrate the state of the de-
vice, and (2) the source and destination machines may have
different network devices, requiring different drivers to run
in the migrated virtual machine.

In this paper, we describe a lightweight software mech-
anism for migrating virtual machines with direct hardware
access. We base our solution onshadow drivers, an agent in
the guest OS kernel that efficiently captures and restores the
state of a device driver. On the source machine, the shadow
driver monitors the state of the driver and device. After mi-
gration, the shadow driver uses this information to config-
ure a driver for the corresponding device on the destination
machine. We implement shadow driver migration for Linux
network drivers running on the Xen hypervisor. Shadow
driver migration requires a migration downtime similar to
the driver initialization time, short enough to avoid disrupt-
ing active TCP connections. We find that the performance
overhead, compared to direct hardware access, is negligible
and is much lower than using a virtual NIC.

1 Introduction

Virtualized systems are increasingly being used across de-
ployed production servers, hosting providers, computational
grids and data centers [3, 7, 25]. Virtual machine migration,
such as VMware VMotion [13] and Xen and KVM Live Mi-
gration [15, 4], is a powerful tool for managing hardware and
reducing energy consumption. When hardware maintenance
is required, running services can be migrated to other hard-
ware platforms without disrupting client access. Similarly,
when hardware is underutilized, management software can
consolidate virtual machines on a few physical machines,
powering off unused computers.

Virtual machine migration relies on complete hardware
mediation to allow an application using a device at the source
of migration to be seamlessly connected to an equivalent de-
vice at the destination. In the case of disk storage, this is
often done with network disk access, so both the virtual ma-

chines refer to a network-hosted virtual disk. In the case
of network devices, this is often done with a virtual NIC,
which invokes a driver in the virtual machine monitor [23],
in a driver virtual machine [6, 12, 18], or in the host oper-
ating system [14, 19]. Complete mediation provides com-
patibility, because the virtual machine monitor can provide a
uniform interface to devices on all hardware platforms, and
provides the VMM with access to the internal state of the de-
vice, which is managed by the VMM or its delegated drivers
and not by the guest.

However, complete mediation of network access is a ma-
jor performance bottleneck due to the overhead of transfer-
ring control and data in and out of the guest virtual machine.
This overhead can be significant up to a factor of five for
network transmit and receive [11, 17]. As a result, several
research groups and vendors have proposed granting virtual
machinesdirect accessto devices. For example, Intel’s VT-d
provides safe access to hardware from virtual machines [1].
In this mode of device access, device drivers in the guest
operating system communicate directly with hardware de-
vices without hypervisor mediation for better I/O through-
put. However, direct device access, also called direct I/O or
passthrough I/O, prevents migration, because the device state
is not available to the VMM. Instead, a real device driver
running in the guest manages the device state, opaque to the
VMM. The problem is further complicated for the case when
different devices run at the source and destination, because
the state at the source may be irrelevant or incompatible with
the device at the destination.

In this paper, we leverage shadow drivers [20, 21] to mi-
grate virtual machines that directly access devices. A shadow
driver is a kernel agent that executes in the guest virtual ma-
chine to capture the relevant state of the device. After migra-
tion, the shadow driver disables and unloads the old driver
and then initializes a driver for the device at the migration
destination. In addition, the shadow driver configures the
device driver at the destination host.

We have implemented a prototype of shadow driver mi-
gration for network device drivers running in Linux guest
operating systems on the Xen hypervisor. In experiments,
we find that shadow drivers is an effective at migration pro-
viding:

1. Live Migration : Low latency migration that does not
disrupt TCP connections to the direct-access device be-
ing migrated.



Virtual Machine 
Monitor

Driver VM

Driver Kernel

Real Driver

Network Network

Guest VM

Guest Kernel

Real 
Driver

Virtual 
Driver

Direct I/O

Virtual I/O

Figure 1:I /O paths in a virtual machine.

2. Transparency: Applications and services running in
the guest VM do not need to perform any migration-
specific tasks.

3. Low overhead: Shadow drivers have little impact on
direct-I/O performance while providing live migration
support for network direct-access devices.

4. Moderate implementation efforts: Our implementa-
tion does not require excessive or widespread changes
to the kernel subsystem and requires no changes to the
driver.

5. No residual dependencies at the source: We cleanly
detach the device from the guest operating system at the
source and divert all active connections to the destina-
tion so that it can be re-used by other guest operating
systems post-migration immediately.

In the following section, we provide background on I/O
virtualization. Following that, we describe the architec-
ture of shadow driver migration, then the implementation of
direct-I/O migration, followed by evaluation, related work
and conclusions.

2 I/O Virtualization

Virtual machine monitors and hypervisors must provide
guest virtual machines access to hardware devices to perform
I/O. For fully virtualized and para-virtualized systems, only
a virtual device is exposed to the guest operating system.
In case of direct device access the real device is exposed to
the guest operating system. These methods of device access
have different tradeoffs.

2.1 Overview

With virtual I /O, operations in a guest VM are intercepted
by the VMM and carried out by either the hypervisor [23],

a host operating system [14, 19], or a driver executing in
a privileged virtual machine [6, 12, 18]. In the virtual I/O
model, the onus of supporting diversity of devices lies where
the real drivers execute, i.e. with the host operating system or
the hypervisor. The guest operating system is only presented
a virtual device and it remains unaffected by the heterogene-
ity of the underlying hardware. The virtual interface also en-
ables the hypervisor to provide device sharing between mul-
tiple guest operating systems.

This model easily supports migration because the hyper-
visor has access to the virtual device state exposed to the
guest operating system. After migration, the hypervisor at
the destination offers the same virtual device in the same vir-
tual state. Thus, live migration for virtual devices is easily
orchestrated by the hypervisor.

Despite these benefits, virtual I/O reduces performance
due to the overhead of mediation since the hypervisor must
interpose on all I/O requests, adding additional traps. Shown
in Figure1 is the support needed for virtual I/O; a guest vir-
tual driver in the guest operating system sends its requests to
a driver domain, which runs the real driver. These requests
are mediated by the hypervisor.

With hardware that provides safe device access from guest
VMs [1, 2], it is possible to grant virtual machines direct ac-
cess to hardware. Guest VMs execute device drivers that
communicate with the device, bypassing the VMM. This
method of I/O access, known asdirect I/O, provides perfor-
mance close to native, non-virtualized I/O [26]. Direct I/O is
most suited to hardware devices that require high throughput,
such as network devices.

Direct access to hardware can raise security issues, as the
driver or the device may use DMA to access memory out-
side the guest virtual machine or raise too many interrupts.
These problems are resolved by using an IOMMU that re-
stricts DMA to physical memory allocated to the virtual ma-
chine and that virtualizes interrupts to ensure they are sent to
the correct processor. Figure1 shows direct I/O on the left
side, where the real drivers execute in the guest operating
system and directly access the device.

Direct I/O, however, prevents migration because the
VMM has no information about the state of the device, which
is controlled by the guest VM. The destination host may have
a different direct-I/O device or may only use virtual I/O. Be-
cause the VMM does not have access to the state of the driver
or device, it cannot correctly reconfigure the guest OS to ac-
cess a different device at the destination host. Furthermore,
if the destination host runs a different device, the existing
driver running in the migrating guest OS will not work.

To provide live migration support, one needs to capture the
state of the driver either in the guest operating system or in
the hypervisor and orchestrate migration to correctly recon-
figure the device while maintaining the liveness of migration.
Maintaining the liveness of migration requires that network
connections are not reset either within the guest operating



system or outside and that applications should not fail due to
network discontinuity.

2.2 I/O Virtualization in Xen

Device drivers in Xen run outside the hypervisor in a virtual
machine. Drivers may execute either in thedom0manage-
ment virtual machine or in a separate driver virtual machine,
called adriver domain. With the OS kernel of this VM, a
backend driverreceives requests from Xen and passes them
to an unmodified device driver, which communicates with
the hardware.

Guest operating systems run in unprivileged domains, ti-
tleddomU. Xen provides three options for device virtualiza-
tion: (1) no virtualization, (2) full virtualization, and (3) and
para-virtualization. With full virtualization and no virtual-
ization, guest OSes run unmodified device drivers. For the
fully virtualized devices, Xen traps access to virtual hard-
ware registers and translates these requests into calls into
the backend driver. While a fully virtualized device can
be shared between multiple guests, a non-virtualized device
cannot be shared but provides high performance direct I/O.

The most common method of device virtualization is para-
virtualization, in which guests operating systems run a vir-
tual device driver, thefrontend driver, that calls into Xen to
communicate with the backend driver. This is more efficient
than simulating real a device, as it makes use of shared mem-
ory for passing data between virtual machines.

Xen relies on hypervisor mediation to perform migration
of I/O devices. Xen 3.2 requires the source and destination to
have access to the storage where the guest operating system
to be migrated resides. Xen only migrates if the network
devices are virtual and source and destination host machines
are on the same layer-2 network subnet.

Xen migration consists of the following steps. First, Xen
sends the virtual machine state information to the destina-
tion and checks for the availability of appropriate resources
to run the virtual machine at the destination, such as enough
memory. Once these resources are reserved, Xen starts an
iterative pre-copy of the pages from the source to the desti-
nation. This includes initially sending all pages to the desti-
nation followed by sending only the modified pages since the
previous send. When only a few pages remain to be copied,
Xen suspends the virtual machine at the source, and copies
all modified pages. At this point, all network traffic is redi-
rected to the destination physical host by sending a reverse
ARP network packet. The source now discards all informa-
tion about the virtual machine and while the virtual machine
is restarted at the destination. All virtual devices are made
available to the virtual machine and it continues to run nor-
mally.

3 Architecture

The primary goals of migration with shadow drivers are:

1. Low performance cost when not migrating: because
migration is a relatively rare event, a solution should
not incur much overhead when there is no migration
happening (the common case).

2. Minimal downtime during migration : This is to en-
sure that the TCP connections are not broken when a
migration occurs and hence the migration islive.

3. No assistance from code in the guest before migra-
tion: This is to ensure that migration is not delayed
due to execution of a significant amount of code pre-
migration.

Shadow driver migration introduces an agent in the guest
operating system to manage the migration of direct-access
devices. Shadow drivers are class-based: one implementa-
tion is needed for each class of devices sharing an interface,
such as network devices or sound devices. Shadow drivers
interpose on this interface to monitor driver execution [20].
A shadow driver captures the state of a direct-I/O driver in a
virtual machine before migration and then starts and config-
ures the appropriate driver after migration with this state.

3.1 Shadow Driver Overview

A shadow driver is a kernel agent that monitors and stores
the state of a driver by intercepting function calls between
the driver and the kernel. Shadow drivers were originally
designed to provide transparent recovery against driver fail-
ures. In the occurrence of driver failures, the device driver
processes incoming requests and recovers the original driver.

Shadow drivers provide three critical features that are use-
ful for migration of direct-access devices. First, shadow
drivers continuously capture the state of the driver by in-
tercepting calls between the kernel and the driver to record
calls that configure the driver and to track all kernel objects
in use by the driver. After migration, shadow drivers can
initialize a new driver and place it in the same state as the
pre-migration driver. Second, shadow drivers can clean up
and unload a driver without executing any driver code. Thus,
a shadow driver can unload the driver from the guest virtual
machine without executing any driver code, which may mal-
function when the device is not present. It then proceeds to
correctly configure a new physical or virtual device. Third,
shadow drivers proxy for the driver during recovery so that
applications in the guest operating system do not observe a
discontinuity when a migration occurs.

Figure 2 shows the use of shadow drivers before, dur-
ing, and after migration. This approach relies onpara-
virtualization [24], as the code in the guest VM participates
in virtualization.

3.2 Normal Operation

During normal operation between migrations, shadow driver
tapsintercept all function calls between the direct-I/O driver



Figure 2:Migration with shadow drivers.

and the guest OS kernel. The shadow driver also tracks the
return values of these function calls. By doing so, the driver
can track all shared objects between the driver and the kernel
like device objects, interrupt request lines etc. The shadow
driver is also able to track state changes to the driver state
like device configuration operations, ioctl requests etc. This
mode of operations is referred to as thepassive modeof op-
erations where the shadow driver silently tracks device state.

3.3 Migration Support

When a migration is initiated, the VMM suspends the virtual
machine and copies its state from the source host to the des-
tination host. At the destination, the VMM injects an upcall
(or returns from a previous hypercall), notifying the guest
OS that migration just happened. At this point, the guest OS
notifies all shadow drivers that a migration has taken place.

Immediately after migration, shadow drivers transition
into active mode, where they perform three functions. First,
they proxy for the device driver, fielding requests from the
kernel until a new driver has been started. This proxying en-
sures that the kernel and application software is unaware that
the direct-access device has been replaced. Shadow drivers
respond to requests for the device driver’s service by return-
ing cached data from a previous operation or by stalling the
request until the migration completes.

Second, shadow drivers unload the existing direct-I/O
driver. The shadow driver then walks the table of tracked
objects in use by the driver and releases any objects not
needed after migration. The shadow driver then proceeds to
start the corresponding new driver for the destination host’s
direct-access device. When starting this driver, the shadow
driver uses its log to configure the destination driver similar
to the source driver, such as replaying configuration calls and

injecting outstanding packets that may not have been sent.
In addition, the shadow driver ensures that the information
about the hardware change is propagated to external depen-
dencies. For network devices, shadow drivers ensure that lo-
cal switches are aware that the MAC address for the virtual
machine has changed or migrated. Once this is complete,
the shadow driver transitions back to passive mode, and the
device is available for use.

3.4 Summary

Using shadow drivers for migration provides several benefits
over detaching the device before migration and re-attaching
it after migration. First, the shadow driver is the agent in
the guest VM that configures the driver after migration, en-
suring that it is configured properly to its original state and
has device connectivity. Second, shadow drivers can reduce
the downtime of migration, because we need not detach the
driver prior to migration, allowing that to occur at the des-
tination instead. Third, shadow drivers are class drivers and
have only one implementation per device class type and are
independent of device drivers. As a result, shadow drivers
can provide migration support for an entire class of drivers
with a single implementation effort.

4 Implementation

We implemented shadow driver migration for network de-
vices using Linux 2.6.18.8 as a para-virtualized guest oper-
ating system within the Xen 3.2 hypervisor. Our implemen-
tation consists of two bodies of code: changes to the Xen
hypervisor to enable migration, and the shadow driver im-
plementation within the guest OS. We made no changes to



device drivers. The bulk of our changes reside in the guest
OS, which we modified to enable shadow driver support.

4.1 Xen

We made minimal changes to the Xen hypervisor. These in-
clude changes to remove restrictions for direct-access device
migration and changes for addition and removal of direct-
access device information during migration. We modified
Xen 3.2 to remove restrictions that prohibit migrating vir-
tual machines using direct I/O. Because migration was not
previously supported in this configuration, there were sev-
eral places in Xen where code had to be modified to enable
this. For example, Xen refused to migrate virtual machines
that map device-I/O memory. Furthermore, after migration
Xen does not automatically connect direct-I/O devices. As
a result, migration would fail or the guest would not have
network access after migration.

We currently address these problems in Xen by modify-
ing the migration scripts. In dom0, the management domain,
we modified migration code to detach the guest virtual ma-
chine in domU from the virtual PCI bus prior to migration.
Detaching allows Xen to migrate the domain, but as a side
effect can cause the guest OS to unload the driver. Unload-
ing the device breaks the existing TCP connections and also
delays the migration since a new device is to be registered
post-migration. When the device is detached from the vir-
tual PCI bus, the shadow driver in the guest operating sys-
tem prevents the network driver from being unloaded and
instead disables the device. This occurs just before migra-
tion, which reduces the network downtime during migration
as compared to detaching before copying data. As a result
the virtual machine configuration sent to the destination dur-
ing the pre-copy stage includes the direct-access device de-
tails. We modified the migration code at the destination to
remove references to the source direct-access devices by re-
moving configuration information about all devices attached
by the virtual PCI bus before restarting the virtual machine.

We also modified the migration code to re-attach the vir-
tual PCI bus after migration and to create a virtual event
channel to notify the migrated virtual machine, after it re-
sumes, that a direct-I/O network device is available.

4.2 Shadow Drivers

We ported the existing shadow driver implementation [20]
done on Linux 2.4.18 to the Linux 2.6.18.8 kernel. The orig-
inal shadow driver implementation was designed to work
with a fault isolation system. Since, fault isolation is not
required for migration, we removed dependencies of the
shadow driver code on the isolation system. We also do
not create separate protection domains for driver execution,
reducing performance overheads caused by switching do-
mains.

The remaining shadow driver code provides object track-
ing, to enable recovery; taps, to control communication be-

tween the driver and the kernel; and a log to store the state of
the direct-I/O driver.

4.2.1 Passive Mode

During passive mode, the shadow driver tracks kernel objects
in use by the direct-I/O driver in a hash table. We implement
taps withwrappersaround all functions in the kernel/driver
interface by binding the driver to wrappers at load time and
by replacing function pointers with pointers to wrappers at
run time. This is done by generating a small trampoline func-
tion on the fly that sets a per-thread variable and jumps to a
common wrapper. The wrappers invoke the shadow driver
after executing the wrapped kernel or driver function.

The shadow driver records information to unload the
driver after migration. After each call from the kernel into
the driver and each return from the kernel back into the
driver, the shadow driver records the address and type of any
kernel data structures passed to the driver and deletes from
the table data structures released to the kernel. For example,
the shadow driver records the addresses ofsk buffs contain-
ing packets when a network driver’shard start xmit func-
tion is invoked. When the driver releases the packet with
dev kfree skb irq, the shadow driver deletes thesk buff
from the hash table. Similarly, the shadow records the ad-
dresses and types of all kernel objects allocated by the driver,
such as device objects, timers, or I/O resources.

The shadow driver also maintains a small in-memory log
of configuration operations, such as calls to set multicast ad-
dresses, MAC addresses, or the MTU. This log enables the
shadow to restore these configuration settings after migra-
tion. The shadow garbage collects past updates to the same
variable and only contains the latest configuration informa-
tion. As a result, the size of the log remains roughly constant
throughout the lifetime of the running driver.

4.2.2 Migration

When the host operating system initiates migration, the
shadow driver continues to capture the state of the device
until the domain is suspended. All recovery of the driver is
performed at the destination host. At the source, just before
the guest suspends itself, the shadow driver disables the net-
device as previously described and also unmaps the driver’s
mapped I/O memory. This is done because Xen maps the
device I/O memory directly with the physical memory of the
host operating system, which prevents migration.

After the complete state of the virtual machine (VM con-
figuration, dirty pages etc.) has been copied to the desti-
nation host, the host operating system in Xen does not ac-
tually suspend the guest for migration. It instead sends an
event to the guest OS, which suspends itself via a hypercall.
We invoke the shadow driver mechanism after this hyper-
call returns successfully at the destination (an error indicates
migration failed) to ensure that the shadow driver mecha-
nism is the first thing executed after migration. This method



is safe in the presence of multiple CPUs because the guest
kernel shuts down all CPUs exceptcpu 0 before migration.
After migration, the kernel runs without preemption, which
ensures that shadow driver code is executed before any other
code.

The guest OS migration code invokes the shadow driver
to perform recovery on the device driver. The shadow driver
then proceeds to (1) unload the existing driver, (2) initialize
a new driver, and (3) transfer state to the new driver.

After the guest virtual machine restarts, the shadow driver
unloads the old driver using the table of tracked objects. This
step is essential because after migration the original device is
no longer attached, and the driver may not function properly.
Instead, the shadow driver walks its table of kernel objects
used by the driver and frees anything not needed to restart
the driver by issuing the same kernel function calls that the
driver would use to deallocate these objects. For example
for objects allocated bykmalloc, a correspondingkfree is
issued and so on.

The shadow then proceeds to initialize the new driver. If
the device at the migration destination is the same as the one
at the source, the shadow driver restarts the existing driver
that is already in memory. The shadow stores a copy of the
driver’s data section from when it was first loaded to avoid
fetching it from disk during migration. We describe what
happens if the device is different in the next section.

As the driver reinitializes, it invokes the kernel to regis-
ter and to acquire resources. The shadow driver interposes
on these requests and re-attaches the new driver to kernel re-
sources used by the old driver. For example, the new device
driver re-uses the existingnet device structure, causing it to
be connected to the existing network stack. This reduces the
time spent reconfiguring the network after migration and en-
sures that applications directly accessing the net device, such
as packet filters, do not observe a discontinuity.

Finally, the shadow driver restores the driver to its state
pre-migration by re-applying any associated configuration
changes. We borrow code from Xen to make the network
reachable by sending an unsolicited ARP reply message
from the destination network interface as soon as it is up. In
addition, the shadow invokes configuration functions, such
as set multicast list to set multicast addresses, and re-
transmits any packets that were issued to the device but not
acknowledged as sent.

At this stage, the shadow driver reverts to passive mode,
and allows the guest OS to execute normally.

4.3 Migration Between Different Devices

Shadow drivers also support live migration between hetero-
geneous NICs. No additional changes in the guest OS are
required. However, the shadow driver must be informed that
the different device at the guest is the target for migration, so
it correctly transfers the state of the device from the source.
After migration, the shadow driver loads the new driver mod-

ule into memory. It then proceeds with the shadow driver re-
plugging mechanism [21], which allows replacing the driver
during recovery, to correctly start the new driver.

One issue that may arise if the source and destination de-
vices support different features, such as checksum offload.
We rely on the replugging support in shadow drivers [21]
to smooth the differences. In most cases, including check-
sum offload, the Linux network stack checks on every packet
whether the device supports the feature, so that features may
be enabled and disabled safely. For packets that are in flight
during migration and may depend on features not available at
the destination, the shadow driver discards the packets, trust-
ing higher-level protocols to recover from dropped packets.

For features that affect kernel data structures and cannot
simply be enabled or disabled, the shadow replug mecha-
nism provides two options: if the feature was not present
at the source device, it is disabled at the destination de-
vice; the shadow driver masks out bits notifying the kernel
of the feature’s existence. In the reverse case, when a fea-
ture present at the source is missing at the destination, the
shadow replug mechanism will fail the recovery. While this
should be rare in a managed environment, where all devices
are known in advance, shadow drivers support masking fea-
tures when loading drivers to ensure that only least-common-
denominator features are used.

We have successfully tested migration between different
devices using the Intel Pro/1000 gigabit NIC to an NVIDIA
MCP55 Pro gigabit NIC. In addition, the same mechanism
can support migration to a virtual driver, so a VM using
direct-I/O on one host can be migrated to second host with a
virtual device.

5 Evaluation

In this section we evaluate our implementation of shadow
drivers for its overheads and migration latency on Xen. The
following subsections describe the tests carried out for eval-
uating the overheads of logging due to passive monitoring
and the latency of migration introduced due to device migra-
tion support. We also evaluate the implementation cost of
shadow drivers as a kernel subsystem.

We performed the tests on machines with a single 2.2GHz
AMD Opteron processor in 32-bit mode, 1GB memory, an
Intel Pro/1000 gigabit Ethernet NIC (e1000 driver) and an
NVIDIA MCP55 Pro gigabit NIC (forcedeth driver). We
conducted most experiments with the Intel NIC configured
for direct I/O. We use the Xen 3.2 unstable distribution with
the linux-2.6.18-xen kernel in para-virtualized mode. We do
not use hardware protection against DMA in the guest VM,
as recent work shows its cost [26].

5.1 Overhead of Shadow Logging

Migration is a rare event, so preparing for migration should
cause only minimal overhead. In this section, we present



Network Device I /O Access Type Throughput CPU Utilization

Intel Pro/1000 gigabit NIC
Virtualized I/O 698 Mbits/s 14%

Direct I/O 773 Mbits/s 3%
Direct I/O 769 Mbits/s 4%

with shadow driver

NVIDIA MCP55 Pro gigabit NIC
Virtualized I/O 706 Mbits/s 18%

Direct I/O 941 Mbits/s 8%
Direct I/O 938 Mbits/s 9%

with shadow driver

Table 1:TCP streaming performance with netperf for each driver configuration using two different network cards. Each test is the
average of five runs.

measurements of the performance cost of shadow driver taps
and logging in passive mode. The cost of shadow drivers is
the time spent monitoring driver state during passive mode.
We measure the cost of shadow drivers compared to (1) fully
virtualized network access, where the device driver runs in
Xen’s driver domain (dom0), and (2) direct I/O access with-
out shadow drivers, where the driver runs in guest domain
(domU) and migration is not possible.

We measure performance using netperf [5], and report the
bandwidth and CPU utilization in the guest for TCP traffic.
The results in Table1 show throughput and CPU utilization
using different I/O access methods for both network cards for
transmit traffic. Direct I/O with shadow drivers for migra-
tion has throughput within 1% of direct I/O without shadow
drivers, and 10-30% better than virtualized I/O. CPU utiliza-
tion with shadow drivers was one percentage point higher
than normal direct I/O, and 40-70% lower than virtualized
I/O. Based on these results, we conclude that shadow drivers
incur a negligible performance overhead.

5.2 Latency of Migration

One strength of live migration is the minimal downtime due
to migration, often measured in tenths of seconds [4]. This is
possible because drivers for all devices at the destination are
already running in Dom0 before migration and do not require
additional configuration during migration. With direct I/O,
though, the shadow driver at the destination must unload the
previously executing driver and load the new driver before
connectivity is restored. As a result, the latency of migration
is now affected by the speed with which drivers initialize.

In this section, we measure the duration of the network
outage using shadow driver migration. We generate a work-
load consisting of ping operations and file transfer applica-
tion against a virtual machine and monitor the network traf-
fic using WireShark [27]. We measure the duration of con-
nectivity loss during migration. We also measured the oc-
currence of different steps of migration during the migration
process using timing information generated byprintk calls.

Based on the monitoring experiments, we observe that the
packets from a third host are dropped for 3 to 4 seconds while
migration occurs, short enough to allow TCP connections to

survive. In contrast, Xen with virtual devices can migrate in
less than a second.

We also performed experiments to perform file copy oper-
ations to the migrating virtual machine. We copied a 100MB
file to the migrating machine from another host connected
over a megabit network. The host operating systems mean-
while were connected over a gigabit network. We find that
the file copy application scp, does not abort file transmis-
sion when the guest operating system where the file is being
copied onto is migrated. The file transfer is stalled for less
than 2 seconds starting from the point when the guest is sus-
pended at the source and the file transfer resumes as soon as
migration finishes and the local switches are informed about
the changed MAC address.

We analyzed the causes for the expanded migration time,
and show a time line in Figure3. This figure shows the events
between when network connectivity is lost and when it is re-
stored. Several differences to Xen stand out. First, we cur-
rently disable network accessbeforeactual migration begins,
with the PCI unplug operation. Thus, network connectivity
would be lost while the virtual machine is copied between
hosts. This is required because Xen currently prevents mi-
gration while PCI devices are attached to a guest VM; we
postpone this detachment to only just before the machine is
suspended to minimize the migration downtime.

Second, we re-use the network device interface registered
with the kernel. This helps us save time required to register
a new network device with the kernel.

Third, we observe that the majority of the time, over two
seconds, is spent waiting for the e1000 driver to come up
after migration. This time can be reduced only by mod-
ifying the driver, for example to implement a fast-restart
mode after migration. In addition, device support for per-
VM queues may reduce the driver initialization cost within
a VM [17]. However, our experience with other drivers sug-
gests that for most devices the driver initialization latency is
much shorter [20].

5.3 Complexity of Implementation

In this section, we show that shadow driver migration can
be easily integrated in the kernel with minimal programming
effort.
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Figure 3:Timing breakdown of events during migration.

Our implementation of the kernel subsystem, as described
before, consists of wrappers around the kernel driver in-
terface, taps and changes to record/replay the driver state.
We have implemented shadow drivers to support all class
of drivers but have the wrappers and recovery support im-
plemented only for network drivers. Our code consists of
18KLOC. Of this, approximately, 45% of the code consists
of wrappers around the kernel-driver interface, half of which
can be automatically generated via scripts.

We argue that our changes are minor when considered in
the context of kernel driver code. For example, thee1000
driver code alone consists of 11KLOC and we add significant
functionality for an entire class of drivers at a comparable
implementation effort.

6 Related Work

Live virtual machine migration is supported by most com-
mercial virtualization platforms. VMware Workstation,
VMware Server, and Xen (2.0 onwards) support the hosted
(or split) I/O model [10], while the hypervisor direct I/O
model is supported by VMware ESX Server (for storage and
network). Direct I/O is supported by Xen and recently by
KVM. Live Migration is an important and often-used fea-
ture. None of the commercial VM migration techniques
support migration for devices performing direct device ac-
cess [10, 4]. Recently, Xen introduced a patch in Xen 3.3
to unplug direct-access devices, perform migration, and then
re-plug a different device at the destination. This migration
mechanism is not live and does not maintain any active con-
nections.

There was been significant work in bridging the hetero-
geneity in migration. Past work investigates performing
CPU, memory and I/O migrations across different virtual
machine monitors [9]. The approach uses the common ABI
for para-virtualization and emulation-based I/O devices.

Recent work on migration of direct-I/O devices relies on
the Linux PCI hotplug interface to remove the driver be-
fore migration and divert all traffic to the virtual interface
and divert it back to physical NIC after migration [28]. This

approach maintains connectivity with clients by redirecting
them to a virtual network with the Linux bonding driver. Be-
cause the bonding driver only supporting network devices,
this approach is similarly limited. It also relies on an addi-
tional network interface with client connectivity to maintain
service during migration. Our implementation does not re-
quire any additional or different [16] interfaces with client
access and can be applied to any class of devices.

Intel has proposed an additional solution for migration of
direct-I/O devices, but it relies on hardware support in the
devices and modified guest device drivers to support migra-
tion [22]. In contrast, our approach supports migration with
unmodified drivers in the guest virtual machine with less
than 1% performance overhead. This is especially useful
for devices that do not have drivers that can execute inside
the hypervisor but still require migration, such as network
cards with specialized performance optimizations. Further-
more, both Intel’s approach and the hotplug approach require
running migration code in the guest virtual machine at the
source host, which may not be possible in all migration sce-
narios.

7 Conclusion

We describe using shadow drivers to migrate the state of
direct-access I/O devices within a virtual machine. While
we implement shadow driver migration for Linux network
drivers running over Xen, it can be readily ported to other
devices, operating systems, and hypervisors.

Our design has low complexity and overhead, requires no
driver and minimal guest OS modification, and provides low-
latency migration. In addition, it can support migrating be-
tween direct-I/O devices and virtual-I/O devices seamlessly.
Migration time is fast, but not as fast as existing systems
using virtualized I/O. A fast-restart mechanism in drivers,
to load the driver rapidly after migration, could reduce the
driver initialization time, the most significant delay during
migration.

Shadow driver migration can also be used for providing
additional functionality. Shadow driver migration can be



used to provide support for I/O devices in client space in an
Internet Suspend/Resume [8] setup. Shadow driver support
in virtual machines can also be used to perform online hot-
swap of direct-access devices for fault tolerance. When these
devices fail, the shadow driver can transparently failover to
another same or different device without any downtime. This
cannot be provided by the hypervisor because the hypervisor
has no information on the state of the device.
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