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Who Am I? 

  Apache Hadoop FileSystem (HDFS)  
 Project Lead 
 Core contributor since Hadoop’s infancy 

  Facebook (Hadoop, Hive, Scribe) 
  Yahoo! (Hadoop in Yahoo Search) 
  Veritas (San Point Direct, Veritas File System) 
  IBM Transarc (Andrew File System) 
  Univ of Wisconsin Computer Science Alumni 

(Condor Project) 



 A Confluence of Trends 

File System 

Queryable Database 

Archival Store 

HADOOP: A Massively Scalable Queryable Store and Archive  

Flexible Schema 

Never Delete Data 

Open Data format 

Fault Tolerance 



Hadoop, Why? 

  Need to process Multi Petabyte Datasets 
  Data may not have strict schema 
  Expensive to build reliability in each 

application. 
  Nodes fail every day 

 – Failure is expected, rather than exceptional. 
 – The number of nodes in a cluster is not constant. 

  Need common infrastructure 
 – Efficient, reliable, Open Source Apache License 



Is Hadoop a Database? 

  Hadoop triggered upheaval in Database Research 
  “A giant step backward in the programming paradigm”, Dewitt et el 
  “DBMS performance outshines Hadoop” – Stonebraker, Dewitt, SIGMOD 

2009 

  Parallel Databases 
  A few scales to 200 nodes and about 5 PB 
  Primary design goal is “performance” 
  Requires homogeneous hardware 
  Anomalous behavior is not well tolerated: 

 A slow network can cause serious performance degradation 
 Most queries fail when one node fails 

  Scalability and Fault Tolerance: Hadoop to the 
rescue! 



Hadoop History 

  Dec 2004 – Google GFS paper published 
  July 2005 – Nutch uses MapReduce 
  Feb 2006 – Starts as a Lucene subproject 
  Apr 2007 – Yahoo! on 1000-node cluster 
  Jan 2008 – An Apache Top Level Project 
  May 2009 – Hadoop sorts Petabyte in 17 hours 
  Aug 2010 – World’s Largest Hadoop cluster at 

Facebook 
 2900 nodes, 30+ PetaByte 



Who uses Hadoop? 

  Amazon/A9 
  Facebook 
  Google 
  IBM 
  Joost 
  Last.fm 
  New York Times 
  PowerSet 
  Veoh 
  Yahoo! 



What is Hadoop used for? 

  Search  
 Yahoo, Amazon, Zvents 

  Log processing  
  Facebook, Yahoo, ContextWeb. Joost, Last.fm  

  Recommendation Systems  
  Facebook    

  Data Warehouse  
  Facebook, AOL  

  Video and Image Analysis 
 New York Times, Eyealike 



Commodity Hardware 

Typically in 2 level architecture 
– Nodes are commodity PCs 
– 20-40 nodes/rack 
– Uplink from rack is 4 gigabit 
– Rack-internal is 1 gigabit 



Goals of HDFS 

  Very Large Distributed File System 
 – 10K nodes, 1 billion files, 100 PB 

   Assumes Commodity Hardware 
 – Files are replicated to handle hardware failure 
 – Detect failures and recovers from them 

  Optimized for Batch Processing 
 – Data locations exposed so that computations can 
move to where data resides 
 – Provides very high aggregate bandwidth 

  User Space, runs on heterogeneous OS  



Secondary NameNode 

Client 

HDFS Architecture 

NameNode 

DataNodes 

 3. Read/write data 

Cluster Membership 

NameNode : Maps a file to a file-id and list of DataNodes 
DataNode  : Maps a block-id to a physical location on disk 
SecondaryNameNode: Periodic merge of Transaction log 



Distributed File System 

  Single Namespace for entire cluster 
  Data Coherency 

 – Write-once-read-many access model 
 – Client can only append to existing files  

  Files are broken up into blocks 
 – Typically 128 - 256 MB block size 
 – Each block replicated on multiple DataNodes 

  Intelligent Client 
 – Client can find location of blocks 
 – Client accesses data directly from DataNode 





NameNode Metadata 

  Meta-data in Memory 
 – The entire metadata is in main memory 
 – No demand paging of meta-data 

  Types of Metadata 
 – List of files 
 – List of Blocks for each file 
 – List of DataNodes for each block 
 – File attributes, e.g creation time, replication factor 

  A Transaction Log 
 – Records file creations, file deletions. etc 



DataNode 

  A Block Server 
 – Stores data in the local file system (e.g. ext3) 
 – Stores meta-data of a block (e.g. CRC32) 
 – Serves data and meta-data to Clients 
 -  Periodic validation of checksums 

  Block Report 
 – Periodically sends a report of all existing blocks to 
the NameNode 

  Facilitates Pipelining of Data 
 – Forwards data to other specified DataNodes 



Block Placement 

  Current Strategy 
 -- One replica on local node 
 -- Second replica on a remote rack 
 -- Third replica on same remote rack 
 -- Additional replicas are randomly placed 

  Clients read from nearest replica 
  Pluggable policy for placing block replicas 

 Co-locate datasets that are often used together 
  http://hadoopblog.blogspot.com/2009/09/hdfs-block-replica-placement-in-your.html 



Data Pipelining 

  Client writes block to the first DataNode 
  The first DataNode forwards the data to the next 

DataNode in the Pipeline, and so on 
  When all replicas are written, the Client moves on 

to write the next block in file 



NameNode Failure 

  A Single Point of Failure 
  Transaction Log stored in multiple directories 

 – A directory on the local file system 
 – A directory on a remote file system (NFS/CIFS) 

  This is a problem with 24 x 7 operations 
 AvatarNode comes to the rescue 



NameNode High Availability: Challenges 

  DataNodes send block location 
information to only one 
NameNode 

  NameNode needs block locations 
in memory to serve clients 

  The in-memory metadata for 100 
million files could be 60 GB, huge!  

DataNodes 

Primary  
NameNode 

Client 

Block location 
message “yes, I 
have blockid 123” 

Client retrieves 
block location from 
NameNode 



NameNode High Availability: AvatarNode 

  Active-Standby Pair 
  Coordinated via zookeeper 
  Failover in few seconds 
  Wrapper over NameNode 

  Active AvatarNode 
  Writes transaction log to filer 

  Standby AvatarNode 
  Reads transactions from filer 
  Latest metadata in memory 

http://hadoopblog.blogspot.com/2010/02/hadoop-namenode-high-availability.html 
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Filer 
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Rebalancer 

  Goal: % disk full on DataNodes should be 
similar 
 Usually run when new DataNodes are added 
 Cluster is online when Rebalancer is active 
 Rebalancer is throttled to avoid network congestion 

  Disadvantages 
 Does not rebalance based on access patterns or load 
 No support for automatic handling of hotspots of data 



Disk is not cheap! - RAID 

  A Data Block is stored in 
triplicate 

  File /dir/file.txt 
  three data blocks 
  nine physical blocks on disk 

  HDFS RAID to the rescue 
  DiskReduce from CMU 
  Garth Gibson research 

A 

A B 

B 

A B 

C 

C 

C 

A file with three blocks A, B and C 

A B C A /dir/file.txt 



HDFS Raid 

  Start the same: triplicate 
every data block 

  Background encoding 
  Combine third replica of 

blocks from a single file to 
create parity block 

  Remove third replica 

  RaidNode 
  Auto fix of failed replicas 

A 

A B 

B 

A+B+C 

A B 

http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html 

C 

C 

C 

A file with three blocks A, B and C 



Hadoop @ Facebook 



Who generates this data? 

  Lots of data is generated on Facebook 
  500+ million active users  

  30 billion pieces of content shared every month 
(news stories, photos, blogs, etc) 



Data Usage 

  Statistics per day: 
  20 TB of compressed new data added per day 
  3 PB of compressed data scanned per day 
  20K jobs on production cluster per day 
  480K compute hours per day 

  Barrier to entry is significantly reduced: 
 New engineers go though a Hadoop/Hive training session 
  300+ people run jobs on Hadoop 
 Analysts (non-engineers) use Hadoop through Hive 



Where is this data stored? 

  Hadoop/Hive Warehouse 
 24K cores, 30 PetaBytes 
 12 or 24 TB per node 
 Two level network topology 

 1 Gbit/sec from node to rack switch 
 4 Gbit/sec to top level rack switch 



 Data Flow into Hadoop Cloud 
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http://hadoopblog.blogspot.com/2009/06/hdfs-scribe-integration.html 
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Archival: Move old data to cheap storage 



Hive – SQL Query Language for Hadoop 

  Efficient SQL to Map-Reduce Compiler 
  Mar 2008: Started at Facebook 

  Countable for 95%+ of Hadoop jobs @ Facebook 
  Used by ~300 engineers and business analysts at 

Facebook every month 



Other uses for HDFS 

  Backup of all mySQL databases 
 Mysql dump files stored  in HDFS 

  Storage for Online Application 
 Apache HBase layered on HDFS 
 HBase is a key-value store 
 500 TB in size 



Useful Links 

  HDFS Design:  
  http://hadoop.apache.org/core/docs/current/hdfs_design.html 

  Hadoop API:  
  http://hadoop.apache.org/core/docs/current/api/ 

  My Hadoop Blog: 
  http://hadoopblog.blogspot.com/ 
  http://www.facebook.com/hadoopfs 


