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Abstract
Multithreaded programming is notoriously difficult to get right. A
key problem is non-determinism, which complicates debugging,
testing, and reproducing errors in multithreaded applications. One
way to simplify multithreaded programming is to enforce determin-
istic execution. However, past deterministic systems are incomplete
or impractical. Language-based approaches require programmers
to write their code in specialized languages. Other systems require
program modification, do not ensure determinism in the presence
of data races, do not work with general-purpose multithreaded pro-
grams, or suffer substantial performance penalties (up to 8× slower
than pthreads) that limit their usefulness.

This paper presents DTHREADS, an efficient deterministic mul-
tithreading system for unmodified C/C++ applications. DTHREADS
not only prevents semantic errors like race conditions and dead-
locks, but also can enhance performance by eliminating false shar-
ing of cache lines. DTHREADS leverages virtual memory and pro-
cess isolation, combined with a deterministic commit protocol,
to ensure robust deterministic execution with low runtime over-
head. Experimental results show that DTHREADS substantially
outperforms a state-of-the-art deterministic runtime system, and
often matches—and occasionally exceeds—the performance of
pthreads.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming–Parallel Programming; D.2.5
[Software Engineering]: Testing and Debugging–Debugging Aids

General Terms Design, Reliability, Performance

Keywords Deterministic Multithreading, Determinism, Parallel
Programming, Concurrency, Debugging, Multicore

1. Introduction
The advent of multicore architectures has increased the demand
for multithreaded programs, but writing them remains painful. It is
notoriously far more challenging to write concurrent programs than
sequential ones because of the wide range of concurrency errors,
including deadlocks and race conditions [18, 23, 24]. Because
thread interleavings are non-deterministic, different runs of the
same multithreaded program can unexpectedly produce different
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results. These “Heisenbugs” greatly complicate debugging, and
eliminating them requires extensive testing to account for possible
thread interleavings [2, 13].

Instead of testing, one promising alternative approach is to at-
tack the problem of concurrency bugs by eliminating its source:
non-determinism. A fully deterministic multithreaded system would
prevent Heisenbugs by ensuring that executions of the same pro-
gram with the same inputs always yield the same results, even in
the face of race conditions in the code. Such a system would not
only dramatically simplify debugging of concurrent programs [15]
and reduce their attendant testing overhead, but would also enable
a number of other applications. For example, a deterministic multi-
threaded system would greatly simplify record and replay for mul-
tithreaded programs [16, 22] and the execution of multiple replicas
of multithreaded applications for fault tolerance [4, 7, 11, 26].

Several recent software-only proposals aim at providing deter-
ministic multithreading, but these all suffer from a variety of dis-
advantages. Language-based approaches are effective at removing
determinism but require programmers to write code in specialized
languages, which can be impractical [10, 12, 29]. Recent determin-
istic systems that target legacy programming languages (especially
C/C++) are either incomplete or impractical. Kendo ensures de-
terminism of synchronization operations with low overhead, but
does not guarantee determinism in the presence of data races [25].
Grace prevents all concurrency errors but is limited to fork-join
programs, and although it is efficient, it can require code modifica-
tions to avoid large runtime overheads [6]. CoreDet, a compiler and
runtime system, enforces deterministic execution for arbitrary mul-
tithreaded C/C++ programs [3]. However, it exhibits prohibitively
high overhead (running up to 8× slower than pthreads; see Sec-
tion 4) and generates thread interleavings at arbitrary points in the
code, complicating program debugging and testing.

Contributions: This paper presents DTHREADS, an efficient de-
terministic runtime system for multithreaded C/C++ applications.
DTHREADS guarantees deterministic execution of multithreaded
programs even in the presence of data races (notwithstanding exter-
nal sources of non-determinism like I/O): given the same sequence
of inputs, a program using DTHREADS always produces the same
output. DTHREADS’ deterministic commit protocol not only elimi-
nates data races but also prevents lock-based deadlocks.

DTHREADS is easy to deploy: it works as a direct replacement
for the pthreads library, requiring no code modifications or re-
compilation. DTHREADS is also efficient. DTHREADS leverages
process isolation and virtual memory protection to track and iso-
late concurrent memory updates, which it deterministically com-
mits. Not only does this approach greatly reduce overhead versus
approaches that use software read and write barriers, it also elimi-
nates cache-line based false sharing, a notorious performance prob-
lem for multithreaded programs. These two features combine to en-



able DTHREADS to nearly match or even exceed the performance
of pthreads for the majority of the benchmarks examined here.
DTHREADS thus marks a significant improvement over the state of
the art in deployability and performance, and provides promising
evidence that fully deterministic multithreaded programming may
be practical.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the DTHREADS architecture and algorithms in
depth, and Section 3 discusses key limitations. Section 4 evaluates
DTHREADS experimentally, comparing its performance and scala-
bility to pthreads and CoreDet. Section 5 provides an overview
of related work, Section 6 describes future directions, and Section 7
concludes.

2. DTHREADS Architecture

1 int a = 0;
2 int b = 0;
3 int main() {
4 spawn(thread1);
5 spawn(thread2);
6 print(a, b);
7 }

void thread1() {
if(b == 0) {

a = 1;
}

}

void thread2() {
if(a == 0) {

b = 1;
}

}

Figure 1. A simple multithreaded program with a data race.

2.1 Overview
Figure 1 shows an example multithreaded program that, because
of data races, non-deterministically produces the outputs “1,0,”
“0,1” and “1,1.” The order in which these modifications occur
can change from run to run, resulting in non-deterministic output.
Using DTHREADS, this program will always produce the output
“1,1”. If this is not the desired behavior, the fact that the result is
reproducible would make it simple for the developer to reproduce
and locate the data race. DTHREADS ensures this determinism
using the following key notions:

Isolated memory access: In DTHREADS, threads are imple-
mented using separate processes, an idea borrowed from Grace [6].
Because processes have separate address spaces, they are a con-
venient mechanism to isolate memory accesses between threads.
DTHREADS uses this isolation to ensure that updates to shared
memory are not visible to other threads until a synchronization
point is reached. The time between synchronization points can
be thought of as a single, atomic transaction. Memory isolation,
in combination with a deterministic commit protocol, is sufficient
to guarantee deterministic execution even in the presence of data
races. Section 2.2 discusses the implementation of this mechanism
in depth.

Deterministic memory commit: Because multithreaded pro-
grams frequently use updates to shared memory to communicate,
DTHREADS must implement a mechanism to expose one thread’s
updates to all other threads. To ensure deterministic execution,
these updates must be exposed at deterministic times, and in de-
terministic order. Rather than using retired instruction counts to
demarcate commit boundaries (as done by CoreDet and Kendo),
DTHREADS updates shared state only at synchronization points:
thread create and exit; mutex lock and unlock; condition variable
wait and signal; and barrier wait. These natural synchronization
points make DTHREADS code more robust: when the boundary is
the number of instructions retired, it is difficult for programmers
to know when a transaction ends. Such boundaries could vary de-
pending on the underlying architecture, and would also be input-
dependent, meaning that slightly different inputs could lead to dra-
matically different thread interleavings. By contrast, DTHREADS
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Figure 2. An overview of DTHREADS phases. Program execution
with DTHREADS alternates between parallel and serial phases.
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Figure 3. An overview of DTHREADS execution.

guarantees that only changes to the sequence of synchronization
operations will affect the order in which updates are exposed.

When it comes time to for a thread to commit updates to shared
state, DTHREADS compares local updates to a “twin” (copy) of
the original shared page, and then writes only modified bytes to
the shared state. This idea is borrowed from the distributed shared
memory systems TreadMarks and Munin [14, 20]. The order in
which threads write their updates to shared state is enforced by a
single global token passed from thread to thread, in deterministic
order. Section 2.3 describes this mechanism in more detail.

Deterministic Synchronization: DTHREADS supports the full
array of pthreads synchronization primitives. Current operating
systems make no guarantees about the order in which threads will
acquire locks, wake from condition variables, or pass through bar-
riers. DTHREADS re-implements these primitives to ensure deter-
ministic ordering via its global token. Details on the DTHREADS
implementations of these primitives are given in Section 2.4.

Fixing the Data Race Example: Returning to the example
program in Figure 1, we can now illustrate how memory isolation
and a deterministic commit order ensure deterministic output. At
the start of execution, thread 1 and thread 2 see the same view of
shared state, with a = 0 and b = 0. Because changes by one thread
to the value of a or b will not be exposed to the other until thread
exit, both threads’ checks on line 2 will be true. Thread 1 will set
the value of a to 1, and thread 2 will set the value of b to 1. These
threads then commit their updates to shared state and exit, with
thread 1 always committing before thread 2. The main thread then
has an updated view of shared memory, and will thus print “1, 1”
on every execution.

2.2 Isolated Memory Access
As described above, in order to achieve deterministic memory
access, DTHREADS isolates memory accesses among different
threads between commit points, and commits the updates of each
thread deterministically.

To isolate the memory access among different threads, DTHREADS
replaces threads by processes. In a multithreaded program run-
ning with pthreads, threads share all memory except for the
stack. Changes to memory immediately become visible to all



other threads. Threads share the same file descriptors, sockets,
device handles, and windows. By contrast, because DTHREADS
runs threads in separate processes, it must manage these shared
resources explicitly.

2.2.1 Thread Creation
DTHREADS replaces the pthread_create() function. Using
the clone system call, DTHREADS controls which resources are
shared between processes. The CLONE_FILES flag (shown on line
3 of Figure 13), is used to create processes that have disjoint address
spaces but share the same file descriptor table.

2.2.2 Deterministic Thread Index
POSIX does not guarantee deterministic process identifiers. To
avoid exposing this non-determinism to threads running as pro-
cesses, DTHREADS uses an internal thread index and shims the
getpid() function. This internal thread index is managed using
a single global variable that is incremented on thread creation. This
unique thread index is also used to manage per-thread heaps and as
an offset into an array of thread entries.

2.2.3 Shared Memory
In order to create the illusion of different threads sharing the same
address space, DTHREADS uses memory mapped files to share
memory across processes (globals and the heap, but not the stack;
see Section 3).

DTHREADS creates two different mappings for both the heap
and the globals. One is a shared mapping, which is used to hold
shared state. The other is a private, copy-on-write (COW) per-
process mapping that each process works on directly. Private map-
pings are linked to the shared mapping through a single fixed-size
memory-mapped file. Reads initially go directly to the shared map-
ping, but after the first write operation, both reads and writes are
entirely private.

Memory allocations from the shared heap memory use a scal-
able per-thread heap organization loosely based on Hoard [5] and
built using HeapLayers [8]. DTHREADS divides the heap into a
fixed number of sub-heaps (currently 16). Each thread uses a hash
of its thread index to find the appropriate sub-heap.

2.3 Deterministic Memory Commit
Figure 2 illustrates the progression of parallel and serial phases.
To guarantee determinism, DTHREADS isolates memory accesses
in the parallel phase. Those memory accesses in the parallel phase
work on their own private copies of memory; that is, updates are not
shared while in the parallel phase. When a synchronization point is
reached, updates are applied (and made visible) in a deterministic
order. This section describes the mechanism used to alternate be-
tween parallel and serial execution phases and guarantee determin-
istic commit order, and the details of commits to shared memory.

2.3.1 The Fence and the Token
The boundary between the parallel and serial phase is the internal
fence. It is not possible to implement the internal fence using
the standard pthreads barrier because the number of threads
required to proceed can change during execution, a feature that
pthreads’ barrier does not support (see Section 2.4).

Figure 4 presents pseudocode for the internal fence. Threads
must wait at the fence until all threads from the previous fence
have departed. Those waiting threads must block until the departure
phase (lines 8–11). If the thread is the last to enter the fence, it
sets the departure phase and wakes the waiting threads (lines 12-
15). As threads leave the fence, they decrement the waiting thread
count. The last thread to leave sets the fence to the arrival phase
and wakes any waiting threads (lines 17-21).

1 void waitFence(void) {
2 lock();
3 while(!isArrivalPhase()) {
4 CondWait();
5 }
6

7 waiting_threads++;
8 if(waiting_threads < live_threads) {
9 while(!isDeparturePhase()) {

10 CondWait();
11 }
12 } else {
13 setDeparturePhase();
14 CondBroadcast();
15 }
16

17 waiting_threads--;
18 if (waiting_threads == 0) {
19 setArrivalPhase();
20 CondBroadcast();
21 }
22 unlock();
23 }

Figure 4. Pseudocode for DTHREADS’ internal fence. (§ 2.3.1)

1 void waitToken() {
2 waitFence();
3 while(token_holder != thread_id) {
4 yield();
5 }
6 }
7 void putToken() {
8 token_holder = token_queue.nextThread();
9 }

Figure 5. Pseudocode for token management (§ 2.3.1).

A key mechanism used by DTHREADS is its global token, which
it uses to enforces determinism. In order to guarantee determinism,
each thread must wait for the token before it can communicate
with other threads. The token is a shared pointer that points to
the next runnable thread entry. Since the token is unique in the
entire system, waiting for the token guarantees a global order for
all operations in the serial phase.

DTHREADS uses two internal subroutines to manage tokens.
waitToken first waits at the internal fence and then waits to
acquire the global token in order to enter serial mode. putToken
passes the token to the next waiting thread.

To achieve determinism (see Figure 2), those threads leaving
the parallel phase must wait at the internal fence before they can
enter into the serial phase (by calling waitToken). Note that it
is crucial that threads wait at the fence even for a thread which is
guaranteed to obtain the token next, since one thread’s commits can
affect another threads’ behavior if there is no fence.

2.3.2 Commit Protocol
Figure 3 shows the steps taken by DTHREADS to capture modifi-
cations to shared state and expose them in a deterministic order. At
the beginning of the parallel phase, threads have a read-only map-
ping for all shared pages. If a thread writes to a shared page during
the parallel phase, this write is trapped and re-issued on a private
copy of the shared page. Reads go directly to shared memory and
are not trapped. In the serial phase, threads commit their updates
one at a time. The first thread to commit to a page can directly copy
its private copy to the shared state, but subsequent commits must
copy only the modified bytes. DTHREADS computes diffs from a
twin page, an unmodified copy of the shared page created at the



beginning of the serial phase. At the end of the serial phase, private
copies are released and these addresses are restored to read-only
mappings of the shared memory.

1 void atomicBegin() {
2 foreach(page in modifiedPages) {
3 page.writeProtect();
4 page.privateCopy.free();
5 }
6 modifiedPages.emptyList()
7 }

Figure 6. Pseudocode for atomicBegin (§ 2.3.2).

Figure 6 presents pseudocode for atomicBegin. First, all
previously-written pages are write-protected (line 3). The old work-
ing copies of these pages are then discarded, and mappings are up-
dated to reference the shared state (line 4).

1 void atomicEnd() {
2 foreach(page in modifiedPages) {
3 if(page.writers > 1 && !page.hasTwin()) {
4 page.createTwin();
5 }
6

7 if(page.version == page.localCopy.version) {
8 page.copyCommit();
9 } else {

10 page.diffCommit();
11 }
12

13 page.writers--;
14 if(page.writers == 0 && page.hasTwin()) {
15 page.twin.free();
16 }
17 page.version++;
18 }
19 }

Figure 7. Pseudocode for atomicEnd (§ 2.3.2).

Figure 7 presents pseudocode for atomicEnd. atomicEnd
commits all changes from the current transaction to the shared
page. For each modified page with more than one writer, DTHREADS
ensures that a twin page is created (lines 3-5). If the version number
of the private copy matches the shared page, then the current thread
must be the first thread to commit. In this case, the entire private
copy can be copied to the shared state (lines 7 and 8). If the version
numbers do not match, then another thread has already committed
changes to the page and a diff-based commit must be used (lines
9-10). After changes have been committed, the number of writers
to the page is decremented (line 13), and if there are no writers left
to commit, the twin page is freed (lines 14-16). Finally, the shared
page’s version number is incremented (line 17).

2.4 Deterministic Synchronization
DTHREADS enforces determinism for the full range of synchro-
nizations in the pthreads API, including locks, conditional vari-
ables, barriers and various flavors of thread exit.

2.4.1 Locks
DTHREADS uses a single global token to guarantee atomicity in the
serial phase. This means that all of a program’s locks are turned into
a single global lock. While this approach has the potential to com-
promise performance, it is necessary to guarantee a deterministic
order of commits to shared memory.

Figure 8 presents the pseudocode for lock acquisition. First,
DTHREADS checks to see if the current thread is already holding
any locks. If not, the thread first waits for the token, commits

1 void mutex_lock() {
2 if(lock_count == 0) {
3 waitToken();
4 atomicEnd();
5 atomicBegin();
6 }
7 lock_count++;
8 }

Figure 8. Pseudocode for mutex_lock (§ 2.4.1).

changes to shared state by calling atomicEnd, and begins a
new atomic section (lines 2-6). Finally, the thread increments the
number of locks it is currently holding. This count must be kept to
ensure that a thread will not pass the token until it has release all of
the locks it acquired in the serial phase.

1 void mutex_unlock(){
2 lock_count--;
3 if(lock_count == 0) {
4 atomicEnd();
5 putToken();
6 atomicBegin();
7 waitFence();
8 }
9 }

Figure 9. Pseudocode for mutex_unlock (§ 2.4.1).

Figure 9 presents the implementation of mutex_unlock.
First, the thread decrements its lock count (line 2). If no more
locks are held, any local modifications are committed to shared
state, the token is passed, and a new atomic section is started (lines
3-6). Finally, the thread waits on the internal fence until the start of
the next round’s parallel phase (line 7).

2.4.2 Condition Variables
Guaranteeing determinism for condition variables is more complex
than for mutexes because the operating system does not guarantee
processes will wake up in the order they wait for a condition
variable.

1 void cond_wait() {
2 waitToken();
3 atomicEnd();
4

5 token_queue.removeThread(thread_id);
6 live_threads--;
7 cond_queue.addThread(thread_id);
8 putToken();
9

10 while(!threadReady()) {
11 real_cond_wait();
12 }
13

14 while(token_holder != thread_id) {
15 yield();
16 }
17 atomicBegin();
18 }

Figure 10. Pseudocode for cond_wait (§ 2.4.2).

Figure 10 presents pseudocode for the DTHREADS implemen-
tation of cond_wait. When a thread calls cond_wait, it first
acquires the token and commits local modifications (lines 2 and 3).
It removes itself from the token queue (line 4) because threads wait-
ing on a condition variable do not participate in the serial phase un-
til they are woken up. The thread decrements the live thread count



(used for the fence between parallel and serial phases), adds itself
to the condition variable’s queue, and passes the token (lines 6-8).
While threads are waiting on DTHREADS condition variables, they
are suspended on a pthreads condition variable (lines 10-12).
Once a thread is woken up, it busy-waits on the token and finally
begins the next transaction (lines 14-17). Threads must acquire the
token before proceeding because cond_wait is called within a
mutex’s critical section.

1 void cond_signal() {
2 if(token_holder != thread_id) {
3 waitToken();
4 }
5 atomicEnd();
6

7 if(cond_queue.length == 0) {
8 return;
9 }

10

11 lock();
12 thread = cond_queue.removeNext();
13 token_queue.insert(thread);
14 live_threads++;
15 thread.setReady(true);
16 real_cond_signal();
17 unlock();
18 atomicBegin();
19 }

Figure 11. Pseudocode for cond_signal (§ 2.4.2).

The DTHREADS implementation of cond_signal is pre-
sented in Figure 11. The calling thread first waits for the token,
and then commits any local modifications (lines 2-5). If no threads
are waiting on the condition variable, this function returns im-
mediately (lines 7-9). Otherwise, the first thread in the condition
variable queue is moved to the head of the token queue and the
live thread count is incremented (lines 12-14). This thread is then
marked as ready and woken up from the real condition variable,
and the calling thread begins another transaction (lines 15-18).

In pthreads, the only difference between cond_signal
and cond_broadcast is that cond_signal just wakes the
first waiting thread and cond_broadcast wakes all waiting
threads. In DTHREADS, cond_broadcast wakes all threads but
only one is marked as ready because these threads are holding
locks, and therefore running in the serial phase. The threads not
marked as ready will wait on the condition variable again.

2.4.3 Barriers
As with condition variables, DTHREADS must ensure that threads
waiting on a barrier do not disrupt the token passing of running
threads. DTHREADS removes threads entering into the barrier from
the token queue and places them on the corresponding barrier
queue.

To avoid blocking on the barrier, the last thread entering into
the barrier moves all threads to the runnable queue and increases
the fence’s thread count.

Figure 12 presents pseudocode for barrier_wait. The call-
ing thread first waits for the token to commit any local modifica-
tions in order to ensure deterministic commit (lines 2 and 3). If
the current thread is the last to enter the barrier, then DTHREADS
moves the entire list of threads on the barrier queue to the to-
ken queue (line 7), increases the fence’s thread count (line 8), and
passes the token to the first thread in the barrier queue (line 9).
Otherwise, DTHREADS removes the current thread from the token
queue (line 12), places it on the barrier queue (line 13), and releases
token (line 14). Finally, the thread waits on the actual barrier (line
19).

1 void barrier_wait() {
2 waitToken();
3 atomicEnd();
4 lock();
5 if(barrier_queue.length == barrier_count-1) {
6 token_holder = barrier_queue.first();
7 live_threads += barrier_queue.length;
8 barrier_queue.moveAllTo(token_queue);
9 } else {

10 token_queue.remove(thread_id);
11 barrier_queue.insert(thread_id);
12 putToken();
13 }
14 unlock();
15 atomicBegin();
16 real_barrier_wait();
17 }

Figure 12. Pseudocode for barrier_wait (§ 2.4.3).

2.4.4 Thread Creation and Exit
To guarantee determinism, thread creation and exit are performed
in the serial phase. Newly-created threads are immediately added
to the token queue. Creating a thread does not immediately release
the token; this approach allows a single thread to quickly create
multiple child threads without having to wait for a new serial phase
for each creation.

1 void thread_create() {
2 waitToken();
3 clone(CLONE_FS | CLONE_FILES | CLONE_CHILD);
4 if(child_process) {
5 thread_id = next_thread_index;
6 next_thread_index++;
7 notifyChildRegistered();
8 waitParentProadcast();
9 } else {

10 waitChildRegistered();
11 }
12 }

Figure 13. Pseudocode for thread_create (§ 2.4.4).

Figure 13 presents pseudocode for thread creation. The caller
first waits for the token before proceeding (line 2). It then creates
a new process with shared file descriptors but a distinct address
space using the clone system call (line 3). The newly created
child obtains the global thread index (line 5), places itself in the
token queue (line 6), and notifies the parent that child has registered
itself in the active list (line 7). The child thread then waits for the
parent to reach a synchronization point.

1 void thread_exit() {
2 waitToken();
3 atomicEnd();
4 token_queue.remove(thread_id);
5 live_threads--;
6 putToken();
7 real_thread_exit();
8 }

Figure 14. Pseudocode for thread_exit (§ 2.4.4).

Figure 14 presents pseudocode for thread_exit. When this
function is called, the caller first waits for the token and then
commits any local modifications (line 3). It then removes itself
from the token queue (line 4) and decreases the number of threads
required to proceed to the next phase (line 5). Finally, the thread
passes its token to the next thread in the token queue (line 6) and
exits (line 7).



2.4.5 Thread Cancellation
DTHREADS implements thread cancellation in the serial phase.
thread_cancel can only be called while holding the token.
If the thread being cancelled is waiting on a condition variable or
barrier, it is removed from the queue. The real pthread_cancel
function is then called, and the calling thread can proceed.

2.5 Optimizations
DTHREADS performs a number of optimizations to improve per-
formance.

Single-threaded execution: When only one thread is run-
ning, DTHREADS does not employ memory protection and treats
all synchronization operations as no-ops. In addition, when only
one thread is active because other threads are waiting on condi-
tional variables, DTHREADS does not try to commit local changes
to the shared mapping (or discard private dirty pages). Updates
are only committed when the thread issues a cond_signal or
cond_broadcast call, which will wake up a thread and thus
require publication of any updates.

Lazy twin creation: Twin pages are only created when a
page has multiple writers during the same transaction. During the
commit phase, the single writer can directly copy its working copy
to the shared state without performing a diff. This reduces the
overhead in the common case, where a single thread is the exclusive
writer of a page.

Exclusive/first writers: If one thread is the only writer on one
page, or if it is the first thread to commit to a page, it can directly
copy its working copy to shared state. DTHREADS currently relies
on the comparison between local version number and the global
page version number. In the page handler, each thread obtains
the version number for every dirty page. In the commit phase,
DTHREADS compares this local version number with the global
version number to check whether it is the first to commit (see
Figure 7).

Parallelization: DTHREADS attempts to expose as much par-
allelism as possible in the runtime system itself. One optimization
is for atomicBegin, which performs cleanup tasks, including re-
leasing private page frames and resetting pages to read-only mode
by calling the madvise and mprotect system calls. If all this
cleanup work is done simultaneously for all threads in the begin-
ning of parallel phase (Figure 2), this can hurt performance for
some benchmarks.

Since atomicBegin does not affect other the behavior of
other threads, most of its work can be parallelized with other
threads’ commit operations without holding the global token. With
this optimization, the token is passed to the next thread as soon
as possible, saving time in the serial phase. Before passing the to-
ken, any local copies of pages that have been modified by other
threads must be discarded, and the shared read-only mapping is re-
stored. This ensures all threads have a complete image of this page
which later transactions may refer to. In the actual implementation,
atomicEnd performs this cleanup.

3. Discussion
This section analyzes some key limitations of DTHREADS that re-
strict its ability to run certain programs, limit the extent of deter-
minism it can guarantee, or potentially affect performance.

Unsupported programs: DTHREADS currently does not
support programs with ad hoc synchronization that avoids the
pthreads library, such as those that use atomic operations im-
plemented in assembly. However, the upcoming C++0X standard
includes a library interface for atomic operations [19, pp. 1107–
1128], and a future version of DTHREADS could correctly imple-
ment these by intercepting these library calls and treating them as

synchronization points. While ad hoc synchronization is a com-
mon practice, it is also a notorious source of bugs; Xiong et al.
show that 22–67% of the uses of ad hoc synchronization lead to
bugs or severe performance issues [30].

DTHREADS also currently does not write-share the stack across
threads, so that updates made by a thread to a stack variable would
not be reflected back to the parent, which could cause a program
to fail. Passing stack variables to a thread for modification is ex-
tremely error-prone and generally deprecated, making this a rare
coding practice.

External determinism: While DTHREADS provides internal
determinism, it does not guarantee determinism when a program’s
behavior depends on external sources of non-determinism, such as
system time or I/O events. Incorporation of DTHREADS in the dOS
framework, an OS proposal that enforces system-level determin-
ism, would provide full deterministic execution, although this re-
mains future work [4].

Runtime performance: Section 4 shows that DTHREADS
can provide high performance for a number of applications; in
fact, for the majority of the benchmarks examined, DTHREADS
matches or even exceeds the performance of pthreads. How-
ever, DTHREADS could occasionally degrade performance, some-
times substantially. One way it could do so would be to exhibit an
intensive use of locks (that is, acquiring and releasing locks at high
frequency), which are much more expensive in DTHREADS than
in pthreads. However, because of its determinism guarantees,
DTHREADS could allow programmers to greatly reduce their use
of locks, and thus improve performance. Other application charac-
teristics, also explored in Section 4.3, can also impair performance
with DTHREADS.

Memory consumption: Finally, because DTHREADS creates
private, per-process copies of modified pages between commits,
it can increase a program’s memory footprint by the number of
modified pages between synchronization operations. This increased
footprint does not seem to be a problem in practice, both because
the number of modified pages is generally far smaller than the
number of pages read, and because it is transitory: all private pages
are relinquished to the operating system (via madvise) at the end
of every commit operation.

4. Evaluation
We perform our evaluation on an Intel Core 2 dual-processor CPU
system equipped with 16GB of RAM. Each processor is a 4-core
64-bit Xeon running on at 2.33GHZ with a 4MB L2 cache. The
operating system is an unmodified CentOS 5.5, running with Linux
kernel version 2.6.18-194.17.1.el5.

4.1 Methodology
We evaluate the performance and scalability of DTHREADS versus
CoreDet and pthreads across the PARSEC [9] and Phoenix [28]
benchmark suites. We do not include results for bodytrack,
fluidanimate, x.264, facesim, vips, and raytrace
benchmarks from PARSEC, since they do not currently work with
DTHREADS (note that many of these also do not work for CoreDet).

In order to compare performance directly against CoreDet,
which relies on the LLVM infrastructure [21], all benchmarks
are compiled with the LLVM compiler at the “-O5” optimization
level [21]. Since DTHREADS does not currently support 64-bit bi-
naries, all benchmarks are compiled for 32 bit environments (using
the “-m32” compiler flag). Each benchmark is executed ten times
on a quiescent machine. To reduce the effect of outliers, the lowest
and highest execution times for each benchmark are discarded, so
each result represents the average of the remaining eight runs.

Tuning CoreDet: The performance of CoreDet [3] is extremely
sensitive to three parameters: the granularity for the ownership ta-
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Figure 15. Normalized execution time with respect to pthreads (lower is better). For 9 of the 14 benchmarks, DTHREADS runs nearly as
fast or faster than pthreads, while providing deterministic behavior.

ble (in bytes), the quantum size (in number of instructions retired),
and the choice between full serial mode and reduced serial mode.
We compare the performance and scalability of DTHREADS with
the best possible results that we could obtain for CoreDet on our
system—that is, with the lowest average normalized runtimes—
after an extensive search of the parameter space (six possible gran-
ularities and 8 possible quanta, for each benchmark). The results
presented here are for a 64-byte granularity and a quantum size of
100,000 instructions, in full serial mode.

For all scalability experiments, we logically disable CPUs using
Linux’s CPU hotplug mechanism, which allows us to disable or
enable individual CPUs by writing “0” (or “1”) to a special pseudo-
file (/sys/devices/system/cpu/cpuN/online).

4.2 Determinism
We first experimentally verify DTHREADS’ ability to ensure deter-
minism by executing the racey determinism tester [25]. This stress
test contains, as its name suggests, numerous data races and is thus
extremely sensitive to memory-level non-determinism. DTHREADS
reports the same results for 2,000 runs.

4.3 Performance
We next compare the performance of DTHREADS to CoreDet and
pthreads. Figure 15 presents these results graphically (normal-
ized to pthreads); Table 1 provides detailed numbers.

DTHREADS outperforms CoreDet on 12 out of 14 benchmarks
(running between 20% and 11.2× faster), while for 9 benchmarks,
DTHREADS provides nearly the same as or higher performance
than pthreads. Because DTHREADS isolates updates in sepa-
rate processes, it can improve performance by eliminating false
sharing—since concurrent “threads” actually execute in different
address spaces, there is no coherence traffic between synchroniza-
tion points. DTHREADS eliminates catastrophic false sharing in
the linear_regression benchmark, allowing it to execute
over 7× faster than pthreads and 11× faster than CoreDet. The
string_match benchmark exhibits a similar, though less dra-
matic, false sharing problem, allowing DTHREADS to run almost
60% faster than pthreads and 9× faster than CoreDet. Two
benchmarks, histogram and swaptions, also run faster with
DTHREADS than with pthreads (2× and 6%, respectively; 2.7×
and 9× faster than with CoreDet). We believe but have not yet ver-
ified that the reason is false sharing.

For some benchmarks, DTHREADS incurs modest overhead. For
example, unlike most benchmarks examined here, which create

long-lived threads, the kmeans benchmark creates and destroys
over 1,000 threads in the course of its execution. While Linux
processes are relatively lightweight, creating and tearing down a
process is still more expensive than the same operations for threads,
accounting for a 14% performance degradation of DTHREADS over
pthreads (though it runs 4.6× faster than CoreDet).

DTHREADS runs substantially slower than pthreads for 4 of
the 14 benchmarks examined here. The ferret benchmark re-
lies on an external library to analyze image files during the first
stage in its pipelined execution model; this library makes intensive
(and in the case of DTHREADS, unnecessary) use of locks. Lock ac-
quisition and release in DTHREADS imposes higher overhead than
ordinary pthreads mutex operations. More importantly in this
case, the intensive use of locks in one stage forces DTHREADS to
effectively serialize the other stages in the pipeline, which must
repeatedly wait on these locks to enforce a deterministic lock ac-
quisition order. The other three benchmarks (canneal, dedup,
and reverse_index) modify a large number of pages. With
DTHREADS, each page modification triggers a segmentation vio-
lation, a system call to change memory protection, the creation of
a private copy of the page, and a subsequent copy into the shared
space on commit (see Section 6 for planned optimizations that may
reduce this cost). We note that CoreDet also substantially degrades
performance for these benchmarks, so much of this slowdown may
be inherent to any deterministic runtime system.

4.4 Scalability
To measure the scalability cost of running DTHREADS, we ran
our benchmark suite (excluding canneal) on the same machine
with eight cores and again with two cores enabled. Whenever
possible without source code modifications, the number of threads
was matched to the number of CPUs enabled. We have found
that DTHREADS scales at least as well as pthreads for 9 of 13
benchmarks, and scales as well or better than CoreDet for all but
one benchmark where DTHREADS outperforms CoreDet by 2×.
Detailed results of this experiment are presented in Figure 16 and
discussed below.

canneal was excluded from the scalability experiment be-
cause this benchmark does more work when more threads are
present, making the comparison between eight and two threads
invalid. DTHREADS hurts scalability relative to pthreads for
four of the benchmarks: kmeans, word_count, dedup, and
streamcluster although only marginally in most cases. In all
of these cases, DTHREADS scales better than CoreDet.
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Figure 16. Speedup of eight cores versus two cores (higher is better). DTHREADS generally scales nearly as well or even better than
pthreads, and almost always (with one exception) scales as well as or better than CoreDet.

DTHREADS is able to match the scalability of pthreads for
three benchmarks: matrix_multiply, pca, and blackscholes.
With DTHREADS, scalability actually improves over pthreads
for 6 out of 13 benchmarks.

4.5 Performance Analysis
The data presented in Table 2 are obtained from the executions
running on all 8 cores. Column 2 shows the percentage of time
spent in the serial phase. In DTHREADS, all memory commits and
actual synchronization operations are performed in the serial phase.
The percentage of time spent in the serial phase thus can affect
performance and scalability. Applications with higher overhead in
DTHREADS often spend a higher percentage of time in the serial
phase, primarily because they modify a large number of pages that
are committed during that phase.

Column 3 shows the number of transactions in each application
and Column 4 provides the average length of each transaction (ms).
Every synchronization operation, including locks, conditional vari-
able, barriers, and thread exits, demarcate transaction boundaries in
DTHREADS. For example, reverse_index, dedup, ferret
and streamcluster perform numerous transactions whose ex-
ecution time is less than 1ms, imposing a performance penalty for
these applications. Benchmarks with longer (or fewer) transactions
run almost the same speed as or faster than pthreads, including
histogram or pca. In DTHREADS, longer transactions amortize
the overhead of memory protection and copying.

Column 5 provides more detail on the costs associated with
memory updates (the number and total volume of dirtied pages).
From the table, it becomes clear why canneal (the most notable
outlier) runs much slower with DTHREADS than with pthreads.
This benchmark updates over 3 million pages, leading to the cre-
ation of private copies, protection faults, and commits to the shared
memory space. Copying alone is quite expensive: we found that
copying one gigabyte of memory takes approximately 0.8 seconds
when using memcpy, so for canneal, copying overhead alone
accounts for at least 20 seconds of time spent in DTHREADS (out
of 39s total).

Conclusion: Most benchmarks examined here contain ei-
ther a small number or long running transactions, and modify a
modest number of pages during execution. For these applications,
DTHREADS is able to amortize its various overheads; by eliminat-
ing false sharing, it can even run faster than pthreads. However,
for the few benchmarks that perform numerous short-lived transac-

Serial Phase Transactions Dirtied
Benchmark (% of time) Count Time (ms) Pages
histogram 0 23 15.47 29
kmeans 0 3929 3.82 9466
linear_reg. 0 24 23.92 17
matrix_mult. 0 24 841.2 3945
pca 0 48 443 11471
reverseindex 17% 61009 1.04 451876
string_match 0 24 82 41
word_count 1% 90 26.5 5261
blackscholes 0 24 386.9 991
canneal 26.4% 1062 43 3606413
dedup 31% 45689 0.1 356589
ferret 12.3% 11282 1.49 147027
streamcluster 18.4% 130001 0.04 131992
swaptions 0 24 163 867

Table 2. Benchmark characteristics.

tions, or modify a large amount of pages, DTHREADS can exhibit
substantial overhead.

5. Related Work
The area of deterministic multithreading has seen considerable
recent activity. Due to space limitations, we focus here on software-
only, non language-based approaches.

Determinator is a microkernel-based operating system that en-
forces system-wide determinism [1]. Processes on Determinator
run in isolation, and are able to communicate only at explicit syn-
chronization points. Currently, Determinator is only a proof-of-
concept system, and cannot be used for general multithreaded ap-
plications without modifications (e.g., it does not currently sup-
port condition variables). DTHREADS also isolates threads by run-
ning them in separate processes, but supports communication via
its diffing and twinning mechanism. Also unlike Determinator,
DTHREADS is a drop-in replacement for pthreads that does not
require any special operating system support.

Isolator guarantees memory isolation during critical sections
using code instrumentation, data replication, and virtual memory
protection [27]. Data accesses that do not follow the application’s
locking discipline are not visible to threads running in critical sec-
tions. Unlike DTHREADS, Isolator does not enforce determinism,
and cannot prevent all data races.



Benchmark CoreDet DTHREADS pthreads CoreDet
pthreads

DTHREADS
pthreads Input

histogram 0.97 0.35 0.73 1.32× 0.48× large.bmp
kmeans 68.41 15.02 13.16 5.20× 1.14× -d 3 -c 1000 -p 100000 -s 1000
linear_regression 6.42 0.57 4.11 1.56× 0.14× key_file_500MB.txt
matrix_multiply 31.68 19.28 19.32 1.63× 0.99× 2000 2000
pca 39.24 21.14 20.49 1.92× 1.03× -r 4000 -c 4000 -s 100
reverse_index 7.85 6.53 2.06 3.81× 3.17× datafiles
string_match 18.31 1.97 3.19 5.74× 0.62× key_file_500MB.txt
word_count 17.17 2.37 2.17 7.91× 1.09× word_100MB.txt
blackscholes 10.49 9.30 9.47 1.11× 0.98× 8 in_1M.txt prices.txt
canneal 14.74 39.82 10.41 1.42× 3.83× 7 15000 2000 400000.nets 128
dedup 3.38 5.39 1.45 2.33× 3.72× -c -p -f -t 2 -i media.dat output.txt
ferret 21.89 16.95 7.02 3.11× 2.41× corel lsh queries 10 20 1 output.txt
streamcluster 14.33 4.61 2.74 5.23× 1.68× 10 20 128 16384 16384 1000 none output.txt 8
swaptions 35.21 3.88 4.18 8.42× 0.93× -ns 128 -sm 50000 -nt 8

Table 1. Benchmarks: execution time (in seconds) and input parameters.

Kendo guarantees a deterministic order of lock acquisitions on
commodity hardware [25]. TERN [17] uses code instrumentation
to memoize safe thread schedules for applications, and uses these
memoized schedules for future runs on the same input. Both are
only able to guarantee determinism for race-free programs, whereas
DTHREADS guarantees determinism even in the presence of races.

CoreDet uses alternating parallel and serial phases, and a token-
based global ordering that we adapt for DTHREADS [3]. Like
DTHREADS, CoreDet guarantees deterministic execution in the
presence of races, but at a much higher cost. All reads and writes to
memory that cannot be proven via static analysis to remain thread-
local must be instrumented. Additionally, CoreDet serializes all
external library calls, except for specific variants provided by the
CoreDet runtime. DTHREADS does not serialize library calls unless
they perform synchronization operations, and only traps on the first
write to a page during a transaction. Because of these differences,
CoreDet runs as much as 8× slower than DTHREADS.

dOS [4] is an extension to CoreDet, and uses the same deter-
ministic scheduling framework. dOS provides deterministic pro-
cess groups (DPGs), which eliminate all internal non-determinism
and control external non-determinism by recording and replaying
interactions across DPG boundaries. Like Kendo, CoreDet and dOS
use retired instruction counts as transaction boundaries. This ap-
proach can make it difficult for programmers to reason about or
debug multithreaded programs even when they are deterministic:
small changes in the code or inputs could unexpectedly trigger dif-
ferent thread interleavings. Because DTHREADS uses synchroniza-
tion operations as boundaries for transactions, changing the code
or input will not affect the schedule so long as the sequence of syn-
chronization operations remains unchanged.

Grace prevents a wide range of concurrency errors, including
deadlocks, race conditions, and atomicity violations, by imposing
sequential semantics on multithreaded programs [6]. DTHREADS
borrows Grace’s threads-as-processes paradigm to provide mem-
ory isolation. Unlike DTHREADS, Grace provides stronger seman-
tic guarantees, but is limited to fork-join parallelism and does not
support inter-thread communication. When Grace detects that mul-
tiple threads have written to the same page, all but one of the threads
will be rolled back, which can substantially degrade performance.
DTHREADS does not rely on rollbacks but rather uses its deter-
ministic commits to provide deterministic multithreaded execution
with higher performance.

6. Future Work
We are investigating ways to enhance the performance and deter-
minism guarantees of DTHREADS.

While DTHREADS ensures full internal determinism, it does not
currently guarantee determinism if the application is sensitive to ex-
ternal non-determinism, such as the latency of network connections
or time of day. We are examining the use of a shim layer to enforce
deterministic delivery of such events in order to achieve the same
kind of external determinism guarantees provided by dOS [4], al-
though without changes to the underlying operating systems. We
also plan to examine whether DTHREADS can be used directly in
conjunction with dOS.

The key performance problem for DTHREADS is when an app-
lication modifies an extremely large number of pages. For those
benchmarks, DTHREADS can incur high overheads. We plan to in-
corporate an ownership protocol to limit page copying and thus im-
prove performance. In many cases, these pages are “owned” (read
and modified) by a single thread. Tracking these pages would allow
DTHREADS to avoid copying modified private pages to the shared
memory space.

7. Conclusion
DTHREADS is a deterministic replacement for the pthreads
library that supports general-purpose multithreaded applications.
DTHREADS is straightforward to deploy, requiring no source code,
and operates on commodity hardware. By converting threads into
processes, DTHREADS leverages process isolation and virtual
memory protection to track and isolate concurrent memory up-
dates with low overhead. By committing these changes determinis-
tically at natural synchronization points in the code, rather than at
boundaries based on hardware performance counters, DTHREADS
not only ensures full internal determinism—eliminating data races
as well as deadlocks—but does so in a way that is portable and
easy to understand. Its software architecture prevents false sharing,
a notorious performance problem for multithreaded applications
running on multiple, cache-coherent processors. The combination
of these approaches enables DTHREADS to match or even exceed
the performance of pthreads for the majority of the benchmarks
examined here, making DTHREADS a safe and efficient alternative
to pthreads for some applications.
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