Push-button verification of
Files Systems via Crash
Refinement

Verification Primer

e Behavioral
o Specification and implementation are both programs
o Equivalence check proves the functional correctness

e Hoare logic
o Functional Specification are the preconditions and postconditions

e More ways e.g. DSL etc

int add(int a, int b) int spec_add(int a, int b) Pre: bitvector32 : a

{ { bitvector32 : b
return a+b; return a * 2scomp b;

} } Post: return =

bvadd2scomp(a, b)

Test function Behaviour specification Hoare specification

Problem

e \Verification of file system
o Push-button i.e. automatic
o No manual annotations or proofs
m BilbyFs took 9.25 months, 13K LOP for 1350 LOC
m FSCQ took 1.5 years, code size is 10x of xv6-fs
o Functional correctness (stronger than the consistency requirement)

e \What is special about file system verification?
o Crash and recovery procedure
o Reordering of writes

Overview of the technique

consistency
invariants

verifier
§ Y
[compiler) optimizer l visualizer '
\ —
A

C code for | counterexample
file system + fsck d

e Input: specification, implementation and consistency invariants
e Trusted components: specification, verifier, compiler and visualizer

Yggdrasil toolkit

e Specification, implementation and consistency invariants are specified in a
subset of python

e Counter examples are given when:
o specification = implementation
o consistency invariants do not hold

e Support for optimizations in the implementation e.g. disk flushes
e After verification it emits C code for the filesystem and fsck utility.

Example: YmInLFS

e Simplified log-structured file system
e Development took less than four hours
e Even caught two bugs in the initial implementation

YminLFS: Specification

e Abstract data structure
e Operations
e Equivalence predicate

class FSSpec(BaseSpec):
def __init__(self):
self._childmap = Map((InoT, NameT), InoT) Dir-inode * file-name -> file-inode

self._parentmap = Map(InoT, InoT) inode -> parent-inode
self._mtimemap = Map(InoT, U64T) !“Ode'>““"“96““
self._modemap = Map(InoT, U64T) Inode -> mode-stat

self._sizemap = Map(InoT, U64T) inode -> size-stat

e Abstract maps
e Abstract types: InotT, U64T are 64-bits integers and NameT is a string type

YminLFS: Specification

e Abstract data structure
e Operations
e Equivalence predicate

def lookup(self, parent, name):
ino = self._childmap[(parent, name)]
return ino if ino > @ else -errno.ENOENT

def stat(self, ino):
return Stat(size=self._sizemap[ino],
mode=self._modemap[ino],
mtime=self._mtimemap[ino])

YminLFS: Specification

def mknod(self, parent, name, mtime, mode):

® AbStraCt data StrUCture # Name must not exist in parent.

) Operations if self._childmap[(parent, name)] > @:
return -errno.EEXIST

e Equivalence predicate
The new ino must be valid & not already exist.
ino = InoT()
assertion(ino > @)
assertion(Not(self._parentmap[ino] > @))

with self.transaction():
Update the directory structure.
self._childmap[(parent, name)] = ino
self._parentmap[ino] = parent
Initialize inode metadata.

self._mtimemap[ino] = mtime
self._modemap[ino] = mode
self._sizemap[ino] = 0

return ino

e Transaction construct ensures all-or-nothing.

YminLFS: Specification

e Abstract data structure
e Operations
e Equivalence predicate

def equivalence(self, impl):
ino, name = InoT(), NameT()
return ForAll([ino, name], And(
self.lookup(ino, name) == impl.lookup(ino, name),
Implies(self.lookup(ino, name) > 0,
self.stat(self.lookup(ino, name)) ==
impl.stat(impl.lookup(ino, name)))))

e Represents equivalence between the state of specification and
implementation.

YminLFS: Specification

e Yggdrasil specification is succinct and expressive
o Functional correctness
o Crash safety using transaction

e Specification is agnostic to the implementation. For the same specification,
we can write log-structured and journaling filesystems.

Implementation

Choose disk model e.g. asynchronous and synchronous
Write each specified operation

Consistency invariants

YminLFS implementation is just 200 lines of python

Implementation: Disk model

e Asynchronous model
o Unbounded volatile cache
o Allows arbitrary reorderings
o Interface:
m d.write(a, v)
m d.read(a)
m d.flush()
o Block addresses are 64bits long.
o Size of each block is 4KB
o Single block read/write is atomic

Implementation: Disk layout

e Log-structured file system
o Copy-on-write fashion

m On writes: modification is done on copies blocks and old blocks are forgotten
No segments
No subdirectories
No garbage collection (fails when it runs out of blocks, inodes or directory entries)
Zero sized files (no read, write or unlink)
It still has to deal with crashes, reordering of writes etc

o O O O O

add an inode block I, for the new file
add a data block D for the root directory,
which now has one entry that maps the
name of the new file to its inode number
2

add an inode block I, for the updated
root directory, which points to its data
block D

add an inode mapping block M’, which
has two entries: 1—b5 and 2—b3
finally, update the superblock SB to
point to the latest inode mapping M’.

Disk flush after each write.

Implementation: operation mknod

SB I M

b() bl bz 153 brl bs bﬁ

(a) The initial disk state of an empty root directory.

1 e
SB | I, | M | I | D| L | M

bo b1 ba bs by by bg

(b) The disk state after adding one file.

SB: superblock
M: inode to block mapping

Implementation: consistency invariants

e Analogous to the well formedness invariant for the specification
e It determines whether a dist state is a valid log-structured file system image

e Implementation invariants are used for

o Verification (do we really need for verification ?7?)
o fsck util generation

e Invariants are checked for the initial file system and used in forming the
precondition and postcondition.

e |nvariants:
o SB constraints
m Next available inode number i > 1
m Next available block number b > 2
m Pointer to M belongs to (0, b) (shouldn’t it be (1, b) ?7?)
o Inode mapping constraints (M)
m Foreachentry (I, B) : | belongs to (0, i) and B belongs to (0, b)
o Root dir constraints (D)
m Foreach entry (name, |) : | belongs to (0, i)

Verification

e Crash free executions: same behaviour of specification and implementation
o Given consistent and equivalent states, specification and implementation produces equivalent
and consistent states in the absence of crashes

e Crashing executions:
o Each possible crash state (including the ones due to reordering) in the implementation must
be equivalent to some state in the specification and the states should be consistent

e Equivalence is determined using the equivalent predicate given in the
specification

Counterexample

1. add an inode block I2 for the new # Pending writes

file Step4 1fs.py:167 mknod write(new_imap_blkno, imap)
2. add a data block D for the root
directory, which now has one entry # Synchronized writes
that maps the name of the new file Step1 1fs.py:148 mknod write(new_blkno, new_ino)
to its inode number 2 Step2 1fs.py:154 mknod write(new_parentdata, parentdata)
3. add an inode block I for the Step3 1fs.py:160 mknod write(new_parentblkno, parentinode
1

. . .. Step5 1fs.py:170 mknod write(SUPERBLOCK, sb
updated root directory, which points P Blky mknod write(sh)

to its data block D # Crash point

4. add an inode mapping block M’,]
which has two entries: 1—b5 and 1fs.py:171 mknod flush()
2—b3

5. finally, update the superblock SB to
point to the latest inode mapping
M.

Flush is missing between step 4 and 5.

Counterexample/proof

e Initial implementation contained two bugs in lookup logic and data layout.
o Could not be detected in testing runs
o Verifier found the same in seconds

e Proof:
o If there is no counterexample found, then none exists, and the implementation is correct
o Note that correctness hold for disks with up to 2*64 blocks and inodes
o For all possible traces, crash scenarios and reorderings
o The theorem only holds when disk is modified only through the file system

Optimizations and compilation

e Optimization
o Minimize disk flushes
m In mknod: first three disk flushes can be removed in 3 mins

e Yggdrasil compilation
o Implementation -> executable
o Implementation -> C code -> executable [using CPython]
o The result is a single-threaded user-space file system

e Summary

No manual proofs

No annotations

Counterexample visualizer is useful for pointing bugs

Trusted computing base:
m Yggdrasil (Verifier, visualizer and compiler). Optimizer is not trusted.
m Dependencies like Z3, Python, gcc, FUSE, Linux kernel

O O O O

Crash refinement

e Crash refinement intuition

o FO specification and F1 is the implementation
o F1is correct wrt FO if starting from equivalent consistent states and invoking same operations

on both systems any state produced by F1 is equivalent to some state in FO
o We do this for all operations and for the whole system

Modeling crashes and flushes

e Each operation is modeled with a function with three inputs

m Current state
m External input
m Crash schedule
o Example: write operation (a -> v) fw
m Current state s (s(a) represent data at address a)
m External input = (a, v)
m Crash schedule: for asynchronous disk model for the write operation is pair of boolean
values (on, sync)
e On: write operation completed and value is stored to volatile cache
e Sync: write value is synchronized to persistent memory

fw(s,x,b) = sla > if on A sync then v else s(a),

where = (a, v) and b = (on, sync).

Crash refinement:

Definitions: State equivalence
S0 ™~ 81

S0 ~7Zp,71 S1 % IU(S[]) /\Il(Sl) N\ Spg ~ S§1.

Defn: Crash-free equivalence

VSD}:S‘]?:B. (S{] ~Tq.Iq 51) = (?6 ~Zo,Z; 9;)

where s = fo(so,x, true) and s7 = fi(s1,x, true).

Defn: Crash refinement w/o recovery (crashes but no
recovery)

e [f the functions are crash-free equivalent and following holds:

\G‘/Sn} 51, iB}bI. Hbﬂ (Sn ~ZTa. L1 51) =4 (3;} it 2 00 5 | 51’1)

where s; = fo(s0,®,bo) and 57 = f1(s1,2,b1).

Defn: Recovery function idempotence

e Recovery function is idempotent if

Vs, b. r(s, true) = r(r(s, b), true).

Defn: Crash refinement with recovery

e [f the functions are crash-free equivalent and following holds:

VSD? 81?113}51. E]b[] (Sﬂ ~To.I1 51) — (9:] e Ty 5 qur1)

where s; = fo(so,®, bo) and 57 = r(f1(s1,x, b1), true).

Defn: No-op

e Function f with recovery function r is a no-op if
e ris idempotent and following holds:

VS[]} Sljmj bl- (Sﬂ MIn?Ij_ 51) = (SD MIﬂrII SJ;-)

where s = r(f(s1,x, b1), true).

e Background operations which do not change the externally visible state of the system are
no-ops.

System crash refinement

e Given two systems FO and F1 and recovery function r
e F1is acrash refinement of FO if every function in F1 with r is either a crash
refinement of the corresponding function in FO or a no-op.

Yxv6 file system overview

e Journaling based file system similar to xv6

o Write-ahead logging
e Module based

o Reduces SMT encoding size

o Faster SMT queries

o Multiple disks for different logical parts of the disk e.g. log, free bitmap etc.
e Yxv6+sync and Yxv6+group-commit

o Group-commit combines multiple transactions in to one.

Yxv6 file system layers

e A layeris proven in each step.

e Once a layer is proven, the top
layer use the specification of
bottom layers.

e Layer 1: Asynchronous disk
o Axiom 1: block device is a crash
refinement of asynchronous disk
specification.

Layer 5

(regular files, symbolic
§ links, and directories

.

Yxvo files

Yxv6 inodes

_________ ? o

-

virtual trans-
actional disk

~

A

block pointer

-

b

transactional disk

write-ahead logging

-

L

asynchronous disk

block device

> Theorem 5

) Theorem 3

_________ ? o

]> Theorem 2

_________ ? e

]> Axiom 1

Yxv6 file system: Layer 2: Transactional disk

Lyt (regular files, symbolic b
e Specification: Transactional disk | links, and directories) - :
corem
manages multiple disks and Vet Rlie
provides abstractions: oo P
o d.begin_tx() Layer 4 inodes
o d.commit_tx() Theorem 4
o d.write_tx() Yxv6 inodes
o dread) TTTTTTTmoommmoos ? ——————————————————
o Operations in a transaction are atomic Layer 3 virtual trans-
. actional disk
and sequential. .) Theorerm 3
e Implementation: block pointer
o Write-ahead logging ~ "ooomomooooo----- ? ——————————————————
o One log for all disks Layer 2 transactional disk
2 Theorem 2
write-ahead logging
Layer 1 (asynchronous disk
g Axiom 1
block device

Yxv6 file system: Layer 2: Transactional disk

Layets (regular files, symbolic b
e Specification: Transactional disk | links, and directories) - :
corem
manages multiple disks and V6 Tiles
provides abstractions: 000 e P
o d.begin_tx() Layer 4 inodes
o d.commit_tx() Theorem 4
o d.write_tx() Yxv6 inodes
o dread) = sssSsasossaoasaoss ? ——————————————————
o Operations in a transaction are atomic Layer 3 virtual trans-
. actional disk
and sequential. S) Theotem 3
e Implementation: block pointer
o Write-ahead logging ~ tmmommsmoooom--oo- ? ——————————————————
o One log for all the managed disks Layer 2 transactional disk
2 Theorem 2
write-ahead logging
Layer 1 (asynchronous disk
: Axiom 1
block device

Yxv6 file system: Layer 3: Virtual transactional disk

e Specification:
o ©64-bit virtual disk addresses
o Only the mapped addresses can be
read/written
o Simplifies inode implementation

e Implementation:
o Uses one transactional disk with three
data disks
m Free block bitmap
m Direct block pointers
m Data + singly indirect block
pointers
o Free block bitmap: One bit in each
block for SMT encoding simplification

e Invariants:
o Injective mapping (one-to-one)
o If block with address a is mapped then
a'" bit in block bitmap must be marked

Layer 5

(regular files, symbolic b
links, and directories

Yxvo files

Yxv6 inodes

_________ ? o

(T

virtual trans-
actional disk

block pointer

_________ ? -

write-ahead logging

_________ ? e

block device

asynchronous disk]>

> Theorem 5

’) Theorem 3

transactional disk
3 Theorem 2

Axiom 1

Yxv6 file system: Layer 4: Inodes

(regular files, symbolic b

° Specification: e links, and directories
_ _ h ~ | Theorem 5
o 32-bit long inode number o
o Eachinodeis mapped to 2% blocks === ——m— ? __________________
o Each inode is mapped to metadata like size, el '
mtime and mode o Lgcies
. Theorem 4
e Implementation: Yxv6 inodes
o 64-bit virtual disk address space is splitin ~ ________________ ? __________________
232 ranges each with 22 virtual blocks. g (Ctial o)
o Uses separate disk for metadata. . actional disk]
. Theorem 3
e Invariants: block pointer
o None ? __________________
Layer 2 transactional disk
2 Theorem 2
write-ahead logging
Layer 1 (asynchronous disk
g Axiom 1
block device

Yxv6 file system: Layer 5: File System

e Specification:
o Extension of FSSpec with regular files,
directories and symbolic links.
o Implementation:
o Builds on top of inode specification
o Inode bitmap disk
o Orphan inode disk
e Invariants:
o Size of unused inode must be zero

o Inode using n blocks should have virtual

blocks larger than n unmapped.

Layer 5

(regular files, symbolic b

links, and directories

.

Yxvo files

-

> Theorem 5

_________ ? ————

inodes
Theorem 4
Yxv6 inodes

________ ? o

-

= T
virtual trans-

actional disk

block pointer

-

b

’) Theorem 3

_________ ? o

transactional disk
Theorem 2

write-ahead logging

-

L

_________ ? e

asynchronous disk
Axiom 1

block device

Finitization

e Most of the operations are finite (bounded loops)

e \With two exceptions:
o Search-related procedure like finding free bit in bitmap
m Validation is used for these cases.
e E.g. runtime check whether index returned is free in the bitmap
o Unlink
m Tofinitize: implementation moves the inode to orphan inodes disk. Garbage collector
later reclaim the data blocks. And garbage collection is proven a no-op. Does not
change the externally visible state.

Single disk and packed bitmaps

Packed bitmap is a refinement of
block bitmap

Using single single disk is a
refinement of using of seven
disks (non-overlapping).

log
disk

file data
disk

log
partition

orphan inodes
disk

file data
partition

orphan inodes
partition

block bitmap
disk

packed block |

bitmap disk

block bitmap
partition

inode bitmap
disk

packed inode
bitmap disk

inode bitmap
parition

inode metadata
disk

packed inodes |

disk

inodes
partition

direct block
pointers disk

disk

Yxve+group-commit and YxXv6+sync

e YXxv6+group-commitis a crash refinement of Yxv6+sync

Beyond file systems

e Yggdrasil can be used for writing applications which use file systems e.g. Ycp
e YcCp spec:
o If copy succeeds the target file is a copy of source file
o If fails due to crash (or invalid target) file system is unchanged
e Ycp implementation:
o Steps:
m Create a tmp file

m Write the source data to it
m Rename

e Ycp implementation is proven to be a crash refinement of the specification

Yggdrasil limitations

e Single-threaded, does not support concurrency

e Cython is not verified

e SMT is limited to first order logic not as powerful is Coqg and Isabelle.
However, it is sufficient for Yxv6.

e Yxv6 does not support modern features like extents and delayed allocation
(allocate-on-flush)

e Generated Fsck cannot repair

Implementation

component specification implementation consistency nv
Yxvo 250 1,500 5
Y minLFS 25 150 5
Yep 15 45 0
Ylog 35 6() 0
infrastructure - 1,500 ~
FUSE stub - 250 -

Evaluation: correctness

fsstress tests from the Linux Test Project

SibylFS POSIX conformance tests

Yggdrasil development + writing of paper hosted on Yxv6

Block Order Breaker to cross-check that the file system state was consistent
after a crash and recovery.

e Manually corrupted the file system and ran fsck

Evaluation: Run-time performance

e SSD

o Yxv6+sync performs similar to ext+sync
and fscq

o Group_commit is 3—150x faster than
ext+sync and fscq

o Group_commit is within 10x ext+default

e RAM disk to understand CPU

overheads
o Fscqis slow because of haskell extracted
code

o Yxv6 benefits from C code
o Largefile is exception

1M

M E

Running time in seconds

001 |

0.1 F

{1.{H}1

1N -

1}

Running time in seconds

[1X1) B

{1041

10 E
1 b

fsc

[l

cﬂid-sync

VAVERES YT
VAV Eroup_commit
extd+defanlt]

Make Bash

Make yxve

Mailbench

Largefile

Smallfile

ik b

s
?i-i-sync

B X

. vy

O yxvhegroup commil

/= extd+default

Make Bash

Make yxve

Mailbench

Largefile

Smallfile

Evaluation: Verification performance

e One hour to verify Yxv6+sync

e 1.6 hours to verify Yxv6+group-commit (on 24 cores) and 36 hours on single
core

e Related: FSCQ takes 11 hours

Related work

e FSCQ: Crash Hoare logic
e Flashix: similar approach, interactive verification
e Bug-finding tools

