Unlocking Energy

Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios
Trigonakis

EPFL

Main Contributions

1. An extensive analysis of the energy efficiency of different types of locks. The
results of this analysis can be used to optimize lock algorithms for energy
efficiency.

2. The POLY conjecture: For locks, Energy efficiency oc Throughput.

3. MUTEXEE, an improved variant of pthread mutex lock. MUTEXEE delivers on
average 28% higher energy efficiency than mutex on six modern systems

Need for Locking

Thread Thread Thread Thread Thread Thread Thread Thread
0 1 2 3 4 5 6 7

Shared

Threads
executing
concurrently

resource m—

Approach to use shared Lock
resource: resource

Logic & Implementation of Locks

Logic Implementation

* Lock * Data structure: Collection of

* Data structure memory locations
* Operations * Operations

* Lock * Read from memory

* Unlock * Write to memory

e Atomically update memory
location

* Test and set
e Atomic addition

Trivial implementation of a Lock (but wrong)

* Data Structure
* Bool s_lock=0 [0=Unlocked, 1=Locked]

* Operation

* Lock: 1. Read s_lock
* While(s_lock==1){}
e s_lock=1 3.s_lock=1

2. Read s_lock

4.s lock=1

* Unlock:
* s_lock=0

e |ssue?

Trivial implementation of a Lock (but wrong)

* Data Structure
* Bool s_lock=0 [0=Unlocked, 1=Locked]

* Operation

* Lock: 1. Read s_lock
* While(s_lock==1){}
* s lock=1 3.s_lock=1

2. Read s_lock

4.s lock=1

* Unlock:
* s lock=0

e |ssue?

* Conclusion: We need atomic read+update instructions

Test And Set Algorithm

* TAS(&var, new_val):
» Atomic{old_val = var; var=new_val; return old_val; }

* Data Structure
* Bool s_lock=0

* Operation

* Lock:

* While(TAS(s_lock,1)){}
* Unlock:

* s lock=0

e |ssue?

Test And Set Algorithm(Contd)

*T1: TAS(), (moved line to T1 cpu)

*T1: processing

*T2: TAS() failed (moved line to T2 cpu)

*T3: TAS() failed (moved line to T3 cpu)

*T2: TAS() failed (moved line to T2 cpu)

*T3: TAS() failed (moved line to T3 cpu)

*T1: unlock()

*|ssue: TAS keeps on moving cacheline from one core to another

Test & Test And Set Algorithm

* Data Structure
* Bool S_lock=0

* Operation
* Lock:
* Dof
While(s_lock==1)
* }While(TAS(s_lock,1))
* Unlock:
* s lock=0

* Only copying. No more moving
* Issue?

Test & Test And Set Algorithm

* Data Structure
* Bool S_lock=0

* Operation
* Lock:
* Dof
While(s_lock==1)
* }While(TAS(s_lock,1))
* Unlock:
* s _lock=0
* Only copying. No more moving

* |ssue?
 Starvation — maybe.
 Unfair: Based on luck. H/w Atomic instruction does not guarantee fairness.

How to guarantee fairness?

How to guarantee fairness?

* Queue (ordered by time of arrival)

Ticket

* SBI bank token system

* Lock:
* Take a new token number
» Wait for display counter to display my token number

* Unlock:
* Display Counter increments the token number displayed

Ticket

* Data structure:
* int display_counter
* int next_token

* Lock:
* int my_token = fetch_and_increment(next_token)
» while(my_token !=display_counter){}

* Unlock:
* display_counter++

*|ssue?

Ticket

* Data structure:
* int display_counter
* int next_token

* Lock:
* int my_token = fetch_and_increment(next_token)
» while(my_token !=display_counter){}

* Unlock:
* display_counter++

* |ssue? All processors are spinning on the same variable. Implies that the time to
retrieve the new value is linear in the number of waiting processors.

MCS

tail

—

-~
\
\

S

run spin spin arriving

MCS

* Data structure:

* Queue_node tail.

* Where: Queue_node = struct { locked, next }
* Lock:

e Atomically Insert my_node{locked=1, next=0}, at the end of the queue.
* |If other thread are running,
* while (my_node.locked == 1)

* Unlock:
* If queue not empty, next_node.locked=0;

* Issue: Non blocking

MCS

Locking Unlocking
* my_node.next = NULL * if (my_node.next == NULL){
* pred = fetch_and_store(queue, i (?écsu(ﬂnqeue, my_node, NULL)X
my_node) lelsel ’

e if (pred != NULL){ while(my_node.next==NULL){}
my_node.is_locked = true }
pred.next = my_node } _
while(my_node.is_locked){} my_node.next.is_locked=false

Discussion: How to optimize spinning? monitor/mwait

Mutex as Syscall : Blocking algorithm

* Data structure:

* OS level: Lock, Blocked Queue of Threads waiting on lock
 Lock(Transfer control to OS)

« If TAS(Lock,1)=1,

e Suspend and Add to Block Queue

* Unlock(Transfer control to OS):
* If Queue not empty,
 Pop from Blocked Queue and unsuspend it.

*|ssue?

Mutex as Syscall : Blocking algorithm

* Data structure:

* OS level: Lock, Blocked Queue of Threads waiting on lock
 Lock(Transfer control to OS)

« If TAS(Lock,1)=1,

e Suspend and Add to Block Queue

* Unlock(Transfer control to OS):
* If Queue not empty,
 Pop from Blocked Queue and unsuspend it.

* |ssue? Syscall Overhead even when there is no contention

Futex!= Mutex

* Data structure:
* Shared between Userspace and Kernel

e Waitlf(addr,val)

* Block if (*addr == val)
* Wake(addr,N):

* Wakeup N threads waiting on this address
*CmpRequeue

Mutex based on Futex

* Lock
* old=CAS(state,0 — 1)
* old=0 — Return
e old=1 — CAS(state, 1— 2)
+ Success? Call futex_wait(state,2)
* old=2 — call futex_wait(state,2)

» Repeat the above (but with 0—2)

* Data structure:

* Int state; (0: Unlocked, 1: Locked
and no one waiting, 2: Locked And

waiting)
* Unlock:
* old = State --
* Old =1:Return
e Old=2:
- state=0

 Futex_wake(state,N=1)

Mutex : pthread _mutex

* Data structure:
e User+Kernel level Lock

* Lock(Transfer control to OS)

* For up to N cycles
* Spin with pause instruction

* If still busy, sleep with mutex.lock

* Unlock(Transfer control to OS):
* Release lock in userspace
* Wakeup thread with mutex.unlock

*|ssue?

Mutex : pthread _mutex

* Data structure:
e User+Kernel level Lock

* Lock(Transfer control to OS)

* For up to N cycles
* Spin with pause instruction

* If still busy, sleep with mutex.lock

* Unlock(Transfer control to OS):
* Release lock in userspace
* Wakeup thread with mutex.unlock

*|ssue? On Unlock: New thread took lock before we wakeup a thread

Mutexee unoptimized

* Data structure:
e User+Kernel level Lock

« Lock(Transfer control to OS)

* For up to N cycles
* Spin with pause instruction

* If still busy, sleep with mutex.lock

* Unlock(Transfer control to OS):
* Release lock in userspace
* Wait in userspace for M cycles
» Wakeup thread with mutex.unlock

*|ssue? Not fine tuned yet.

Characterization

Experiment setup

total -+~ package = cores -=- DRAM —«
Minimum Frequency Ma)ﬂmum Frequency

5 200 1| e

w 160 | 1

= 120 | I

5 80— .

% 40 =" F_-_{-,__] r'- -!'.: .-.

':'-QTF*D': ot

0 51[!152{}253[1354() 0 5 101520 25 30 35 40

Hyper-threads # Hyper-threads

Figure 2: Power-consumption breakdown on Xeon.

* Measure power using Intel Performance counters
e SkylLake: 2 sockets, socket = 10 cores, core = 2 Hyperthreads

Socket 1

intra socket (fast path)

Socket 2

inter socket (slow path)

* 1-10 threads: socket 1 only (no Hyperthreading)
* 10-20 threads: both sockets (no Hyperthreading)
* 20-30 threads: Hyperthreading in socket 1

* 30-40 threads: Hyperthreading in both sockets

The Price of Busy Waiting

sleeping —=—- global spinning -+ local spinning —=—
Power Cycles Per Instruction
— 140 . 80 ——m78M ————
2 f
= 120 45 |}
— $
E 100 o 30 ki
E B0 Q o R i e i M
g - L - 15 I_,.‘\x_. W - LY. R |
Ll L RN S e o !
1 5 10 15 20 25 30 35 40 1 5 10 15 20 25 30 35 40
Threads # Threads

Figure 3: Power consumption and CPI while waiting.

e All threads are waiting for a lock that is never released

* sleeping consumes less power
* power consumption of global/local sleeping after 10 threads ?
* power consumption of global/local sleeping after 20 threads ?

The Price of Busy Waiting

sleeping —=—- global spinning -+ local spinning —=—
Power Cycles Per Instruction
- —— 60 A I A T
45 ||
— $
£
&2 % . =,
Foo AW e Ko _'-._x\..-x-.--.
12 a;.»-.\x_- ¥ E |
1 5 10 15 20 25 30 35 40 1 5 10 15 20 25 30 35 40
Threads # Threads

Figure 3: Power consumption and CPI while waiting.

* Power(local spinning) = 1.03 * Power(global spinning)
* Average CPI of global spinning = 530 cycles

 Why is CPI of sleeping not infinite ?

e CPl(global)>CPI(local). Still almost same power. Why?

Techniques to reduce power consumption of
local spinning

1. pause or mfence instructions
2. \Voltage frequency scaling
3. mwait+monitor instructions

Different types of local spinning

global -—+- local = local-pause — local-mbar -=-
Power Cycles Per Instruction

@ 140 ==
@ 120 ; 45
g ok e i
= 100 ——1 %30
2 80 =) o
S 60 o .3[] .35 | 40 . ! :
1 5 10 15 20 25 30 35 40 1 65 10 15 20 25 30 35 40
Threads # Threads

Figure 4: Power consumption and CPI while spinning.

* Upto 20 Threads: Power(local-pause) < Power(Local) [not mentioned in the paper]
 After 20 Threads: Power(local-pause) > Power(Local)

Different types of local spinning

global -—+- local = local-pause — local-mbar -=-
Power Cycles Per Instruction
o]0 R ——
g 140 = :![—_'ih- ¥
@ 120 . 45
g L i |
=100 —e—i{ 301
, " [___,:_|_ U i
z 80 B 15 |
S 60 . .3[] .35 | 40 ; ! :
1 5 10 15 20 25 30 35 40 1 5 10 15 20 25 30 35 40
Threads # Threads

Figure 4: Power consumption and CPI while spinning.

* What if pause instruction inserts a delay of 100 cycles (Skylake)?

Impact of DVFS on Power

w140 [eges.] VF-max -
© 120 o | VEF-min —=—
E 100 4_,53'-7' e — il monitor/mwait ——
3 80 ::,:*L__Fiﬁ_r——-—— - —a —a-—
ch eo¥4%—
1 5 10 15 20 25 30 35 40
Threads

Figure 5: Power consumption of busy waiting using
DVFS and monitor/mwait.

* VF-min: set the frequency to minimum
* VF-min: set the frequency to maximum

 DVFS-normal: hardware
 DVFS: Freq_core = Min(Freq_hyperthreads)

monitor/mwait

w140 [eges.] VF-max -
© 120 o | VEF-min —=—
g ﬁ__.,-ﬁ!" o = ; DVFS-normal —a—
E 100 4_,.&-7' N —— il monitor/mwait ——
80 g - ‘E— B — B —E—
= W I
gey*—"
1 5 10 15 20 25 30 35 40
Threads

Figure 5: Power consumption of busy waiting using
DVFS and monitor/mwait.

 Why does the power of DVFS-normal drop after 30 threads
* Around 25 watts difference
* VF-switch operation takes around 5300 cycles
May work only if large critical sections (>11K cycles) and that too if both
hyperthreads of the cores have reduced frequencies

monitor/mwait

MONITOR(lock)
LOOP
tmpReg = load(lock)
if(tmpReg == 0) then exit loop
MWAIT(memLoc) // wait until another processor may

// have written the cache line
END LOOP

monitor/mwait

—

VF-max: e

g 14[} I l I *Ir-' 3;. *-J'h]

T 120 2 | VF-min —=—
g ?._.-ém# o = ; DVFS-normal —a—
E 100 4_,53'-'1' e — il monitor/mwait ——
P T

rf Bo="

15 10 15 20 25 30 35 40
Threads

Figure 5: Power consumption of busy waiting using
DVFS and monitor/mwait.

Consumes lesser power than local spinning.
wakeup latency(mwait) = 1600 cycles vs wakeup latency(local spinning) = 280 cycles

Reducing power consumption of busy
waiting

1. pause instructions can increase power consumption
2. Techniques such as DVFS and monitor+mwait are more suited for

OS code and not application code

Next: Understand the overheads of sleeping

Latency: The Price of Sleeping

2 threads invoke futex

8000 «— large critical section
7000

6000
g 209 Il critical secti
o
2 4000 small critical section
>
% 3000
= 2000
-

1000 l

0

sleep call wake-up call

1 sleeps,1 wakes up

Observations
1. Sleep call:
release context
2. Wake-up call:

to handover the lock

3. Turnaround latency =
lock handover latency

turnaround

Frequent sleep/wake-up calls reduce throughput without saving energy

Futex

E«‘EDD = wake-up call ——
B &0 TRase, o L turnaround —eo—
S 60 Bt oz | | T . |
s g f% 95" percentile -3
‘E G 102 100 10* |
S 20 |
S ietmpeme e

102 10° 10* 10° 10° 107

Delay between futex sleep and wake-up calls (cycles, log1o)

Figure 6: Latency of different futex operations.

* Wakeup call: 2700 cycles, Turnaround: 7000 cycles
* Beyond 600K cycles, most likely core goes to deeper idle state

Mutexee optimized

Table 1: Differences between MUTEX and MUTEXEE.

MUTEX MUTEXEE
| for up to ~ 1000 cycles | for up to ~ 8000 cycles— 37‘&')‘5")””“0' time
E spin wi.th pause Sptiﬂ with mfence | 3

if still busy, sleep with futex — Busy waiting

= release in user space (Lock->locked = 0)
= wait in user s Ay
- | : d Coherence
= wake up a thread with futex e (384)

Evaluation

Uncontested locking performance

MUTEX| TAS | TTAS |TICKET| MCS |MUTEXEE
Throughput| 11.88 | 16.88 | 16.98 | 16.97 |12.04 | 13.32
TPP 174.31 |248.14|249.41| 249.24 |176.72| 195.48

Table 2: Single-t

hreaded lock throughput and TPP.

* Simple logic = higher performance

Performance comparison

MUTEX = TAS —+ TTAS = TICKET = MCS - MUTEXEE =
Throughput Throughput per Power

w3 . . - 45 . : : .

gy

@

E 2 -Eh—Er-EM_E\"E“--q Y- —

: _' .._;mus...-w,__m_h_*__ﬂ

-E,_.'! _x:}_ :'idi-&q;:bd 2 |

= St the——R L Ere

E R [i e P RORR i

ﬁ 0 - - - - = 0 - - - I S

1 10 20 30 40 50 @60 1 10 20 30 40 50 60

Threads # Threads

Figure 11: Using a single (global) lock.

» After 40: Performance of TAS,TTAS,Ticket,MCS drops.
* Ticket, MCS is dead after 40

Issue with NonBlocking

Lock

T1(C)

12

T3

T4

Critical Section
(1000 cycles)

Unlock

15
16
T7
18

T5

12

T3

T4

T1(C)
T6
T7
T8

Issue with NonB

Insert into Queue

L~

Wait for my turn

=
/

Critical Section
(1000 cycles)

Unlock

ocking (Queue)

15

Ti(we) | | T2 T3 T4 $$

18

T1(wic)

T5 T2 T3 T4 T6
T7

18

Ticket is better Number of threads in MySQL, SQLite > Number of core

M croBenchmarks

Throughput (Normalized)

TPP (Normalized)

2.5
2.0

0.0

1.0
0.5 -

.I‘- "'m I-I'IIN

o oH P L) o 3 0

i 11 1 N = 2= @ (] o [a L & Ly - o

L] - =1 -] =] H {
BT i 3 S N, S 2
Tl ﬂ H]fﬂ A o
S o e e B R Gl . e — OTICKET

= (] (] w ;M w = = b= = o = () o = b= =

2 |l g | =5 |2 |z |4 |s|6 |2 |q3 |2 |&]|=]838]|8]|°8 m MUTEXEE

= < e = ios = E
HamsterDB [Kyoto Memcached MysQL | RocksDB SQlite | Avg |

Figure 13: Normalized (to MUTEX) throughput of various systems with different locks. (Higher is better)

_ m [=1]=1) 1

1=} % e P P~
3 e r & i e o o) 1
o

11 ﬂﬂﬂmmm@mm ﬂﬁﬁﬁﬂﬁ

=
=
=

518 & ¥2|8] & z | z
— 2 - = 52 E A 3 U B B B MUTEXEE
= S| T|a = E ¢ | 9|3

HamsterDB Kyoto Memcached MySQL RocksDB SQlLite Avg

Figure 14: Normalized (to MUTEX) energy efficiency (TPP) of various systems with different locks. (Higher is better)

Ticket is worse

MacroBenchmarks
OMUTEX OTICKET mEMUTHYEE

- 525 -
Ticket is better v = =S
= 2.0 - - § o o - ol
'“ : n g Np N
E 15 - gt~ L - - 1
5 s "o |I" = IR [18
1.0 - s 5 e
=
£00 - I
i | = — = = (] = = =
) L L (7]
g “lg|o 214 8/8(8
a I S| 8|3
v
HamsterDB Memcached MySQL SQLite

Figure 15: Normalized (to MUTEX) tail latency of vari-
ous systems with different locks. (Lower 1s better)

Conclusion

Approach going forward

Issues with sleeping and waiting
Sleep(Kernel level): Latency
Busy waiting (User level): Power
Idea
Combine both these techniques
Lock: Try busy waiting X times and then call sleep

Time to wait at user level for mutex

sleep -+ spin - ss-1 -e- 88510 —« ss-100 -=- 551000 —-
Communication
w14 : . :
/12
210 |
5 8
g6
=ded
o 2
1 10 20 30 40 1 10 20 30 40
Threads # Threads

Figure 7: Power and communication throughput of
sleeping, spinning, and spin-then-sleep for various 7's.®
Spectrum: sleep --- ss1 --- ss10 --- ss100 --- ss1000 --- spin

Power(spin) is the highest
Throughput(spin) dropping after 10 threads?

Details of the Futex experiment

T1: futex-sleep....2100......deschedule...X...schedule...4000....sysret
T2: futex-wakeup...... 2700......sysret

X depends on the state of the core that is sleeping

Critical path delays: T1: schedule.....sysret and T2: futex-wakeup....sysret

Experiment: Vary the time between futex-sleep(T1) and futex-wakeup(T2) and
study its impact on the time between actual-wakeup(T2) and sysret(T1)

Power mode

 H/w power state

e P :CPU is busy executing
* PO: H/w managed, Turbo, opt for performance
* P1-Pn
* (0,C1,C6 (Core C states): when CPU is Idle/Hlt
» (3 (Package C states) : turns L3 cache off (a part of)
 Tools:
* Cpufreqd
* Thermald : user daemon
* DTS temperature sensor

e uses Intel P state driver, Power clamp driver, Running Average Power Limit control
and cpufreq as cooling methods

