

COL862: Low Power Computing

MEANTIME: Achieving Both
Minimal Energy and Timeliness

with Approximate Computing

Authors: Anne Farrell and Henry Hoffmann,
University of Chicago.
2016 USENIX Annual Technical Conference.

Presented By: Rajesh Kedia, Radhika D.

Date: 05-09-2016.

Summary

● Conflicting requirements:
– Hard timing constraints require pessimistic resource allocation.

– Energy efficiency requires just-right resource allocation.

● Solution:
– Compromising on accuracy (approximate computing) can reduce

energy consumption.

– Exploit approximate computing to meet timeliness and energy
efficiency.

● Contributions:
– A run-time framework for approximate computing to meet minimal

energy as well as hard timing constraints.

– Results from 6 different applications on Linux/ARM demonstrating
the effectiveness of the technique.

Problem Statement

● Runtime varies for a task depending on
input conditions (see Table below).

● Meeting hard deadlines require allocating
resources for the worst case.

● Scheduling based on worst case execution
time (WCET) can lead to waste of
resources/energy.

● Energy aware scheduling can lead to
missing deadlines at times.

● No solution has been proposed to meet
lower energy as well as hard deadlines.

Approximate Computing

● What is Approximate Computing?
● Examples?
● Tradeoff application characteristics to achieve

energy/cost reduction.
● Well suited for signal, media, image processing

applications where application accuracy is quantifiable
and tradeoff is acceptable (e.g. reduced energy but lower
SNR).

● Other metrics for tradeoff: Precision, flickers, user
experience, etc.

● Brings in a 3rd dimension to energy/ execution time
tradeoff.

Motivational Example

Prior Work (1)

● Manipulate slack to meet deadlines and save
energy. e.g. use DVFS, sleep modes, etc.
– Soft timing contrained systems have more flexibility

since occasional timing violations are acceptable.

● Dynamic tailoring of behavior
– Maintain accuracy while minimizing energy.

– Maximize accuracy within given energy.

– Meet performance goal while maximizing accuracy.

– None of them guarantee hard real time behavior.

Prior Work (2)

● Cross layer optimization: Combine application
approximation and resource allocation.
– Coordinating OS and application to meet desired

energy goals.

– Hierarchical: Making system level adaptation and
then application tuning.

– Pick up any 2 out of 3 parameters (performance,
power and accuracy). Soft guarantees in chosen 2
while optimizing the third.

– Again, none of these approaches provide hard real
time guarantee.

Prior Work (3)

● System level approaches
– Coordinating CPU power states, memory and disk

to meet performance goals while minimizing power.

– Clock speed, cache and memory bandwidth
coordinated.

– Provide:
● Hard real time guarantee without any consideration of

energy.
● Or, Energy optimization but only soft real time behavior.

MEANTIME (Minimal Energy ANd TIMEliness)

Figure 1: Conceptual model of
MEANTIME compared
to worst-case and energy-aware
resource allocation.

Figure 3:
Overview of
the
MEANTIME
approach.

MEANTIME Components

● Approximate Computing:
– MEANTIME relies on applications supporting

approximate computing.

– Accuracy need to be a total order, exact values needn't
be known, but just a relative ranking.

● Control for Energy Efficiency
– An open source energy efficient control unit is used

named POET.

– The controller allocates resources which are best from an
energy perspective, and reacts to any timing violation.

– Controller can provide only soft timing guarantees since it
adapts to a violation to fix the timing error.

Governor: Notation and Goal

Governor: Minimizing accuracy loss

● Various approximation
methods can provide
different accuracy versus
speed tradeoff.

● Need to use best
accuracy within given
hard timing constraint.

● Can be solved once only
during initialization.

Governor: Maintain Responsiveness

● Problem:
– When an application shifts from a computationally intensive phase to

an easy phase, the controller reacts to this change by reducing
resource usage.

– Now when an application requires higher computation, the deadline
get

– The control system reacts by detecting an error between the desired
behavior and observed behavior.

– But in MEANTIME, the control system will not detect the phase shift
since every deadline is respected.

● Solution:
– MEANTIME estimates what the latency would have been if the

application had not switched to a less accurate configuration and
passes this latency to the controller.

–

MEANTIME Usefulness

● Can MEANTIME be used for all applications?
● MEANTIME is not designed for all embedded

applications, but for those that
– Have viable performance/accuracy trade-offs,

– Must satisfy hard real-time constraints and minimize
energy consumption despite large fluctuations in
application workload, and

– Have progress indicators and models of completion.

BACKUP

Prior Work

Green: A Framework for Supporting Energy-
Conscious Programming using Controlled

Approximation.

W. Baek and T. Chilimbi.
PLDI, June 2010.

Summary

● Energy efficient computing by compromising slightly on QoS.
● The framework takes complete implementation of functions and

their approximate versions as an input. It also takes the QoS
measurement criteria as an input.

● Similarly, loops are approximated by running them with a fewer
number of iterations.

● The framework has a calibration phase in which the program is run
with multiple calibration inputs to understand QoS vs. runtime
improvements.

● Then use this model to decide the operating points under a given
QoS constraint.

● Also, online monitoring is done to check if the expected QoS and
actual QoS are within limits else an error correction is done.

Benchmarks used

● Bing Search:
– The base version of Bing Search processes all the matching candidate

documents. Instead, we can limit the maximum number of documents (M)
that each query must process to improve performance and reduce energy
consumption while still attempting to provide a high QoS.

● Graphics: 252.eon:
– The main loop in 252.eon iterates N2 iterations and sends a ray at each

iteration to refine the rasterization. As the loop iteration count goes higher,
QoS improvement per iteration can become more marginal. In this case, the
main loop can be early terminated while still attempting to meet QoS
requirements.

● Machine Learning: Cluster GA:
– By terminating the main loop earlier, we can achieve significant improvement

in performance and reduction in energy consumption with little QoS
degradation.

Benchmarks used

● Signal Processing: Discrete Fourier Transform:
– In the core of DFT, sin and cos functions are heavily used. Since the

precise version implemented in standard libraries can be expensive
especially when the underlying architecture does not support complex
FP operations, the approximated version of sin and cos functions can
be effectively used if it provides sufficient QoS. We implement several
approximated versions of sin and cos functions and apply them to our
DFT application.

● Finance: blackscholes:
– The core computation makes heavy use of the exponentiation exp and

logarithm log functions. We provided a series of approximate versions
of these functions that use the corresponding Taylor series expansions
with varying number of polynomial terms.

Prior Work

Eon: A Language and Runtime System for
Perpetual Systems.

J. Sorber, A. Kostadinov, M. Garber,
M. Brennan, M. D. Corner, and E. D. Berger.

SenSys’07

Summary

● For energy harvesting systems, depending on the available
energy, the systems can adjust the service level.

● However, predicting the energy consumption is difficult and
hence the authors propose Eon as an energy aware
programming language.

● Eon’s automatic energy management then dynamically
adapts these states to current and predicted energy levels.

● Eon’s adaptation algorithms require hardware support. We
have built a new charging and energy management board.

● Applications explored: Turtle Tracking, Automobile
Tracking, Remote Camera.

Prior Work

Managing Battery Lifetime with Energy-Aware
Adaptation

J. Flinn and M. Satyanarayanan.
ACM Trans. Comp. Syst. 22.2 (May 2004).

Summary

● Implements powerscope, to measure the current
consumption and profiling of individual applications.

● Fidelity/accuracy of applications can be traded off for energy
savings.

● Implements OS calls where-in user specifies his goal of
battery lifetime and the OS adjusts the fidelity accordingly.
provides system calls like fidelity_register() to register
various fidelity levels, begin_fidelity_op(), end_fidelity_op().
cooperative model: app can specify whatever they support,
OS uses only that information to optimize.

● Maintains priority of applications and when energy demand
increases, it lowers the fidelity of the lowest priority
application and continues until the demand is in budget.

Prior Work

Energy-Efficient Soft Real-Time CPU Scheduling
for Mobile Multimedia Systems

W. Yuan and K. Nahrstedt.
ACM SIGOPS Operating Systems Review 37.5

(2003), pp. 149–163.

Summary

● For a soft real time system, performs CPU scheduling to meet the QoS and
keep it energy efficient.

● Extracts stochastic parameters (e.g. execution cycle count, etc.) to perform
scheduling under given QoS requirements.

● Uses online estimation for cycle counts and uses them during the
optimization. Computes CDF (histogram) for cycle count for task instances.

● Gradually increase the CPU freq. within a task so that if task finishes earlier,
lesser energy is consumed. Uses "starting a job at a lower speed and then
accelerating as it progresses" technique.

● Changes done to linux scheduler
● syscalls added: start_srt(), finish_job() and exit_srt(). //srt=soft realtime
● set_budget and set_dvspnt functions added to tell the scheduler about

task's requirements.
● Also modified the PCB (Process Control Block) to add soft realtime related

info about process.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

