Computational Sprinting on a Hardware/Software Testbed

Arun Raghavan® Laurel Emurian® Lei Shao
Marios Papaefthymiou’ Kevin P. Pipe! Thomas F. Wenisch' Milo M. K. Martin®

* Dept. of Computer and Information Science, University of Pennsylvania
Dept. of Electrical Engineering and Computer Science, University of Michigan
* Dept. of Mechanical Engineering, University of Michigan

Background

Inflection point for CMOS scaling due to
thermal constraints causing the advent of dark
silicon

Problem is particularly acute in mobile
hand-held devices e.g.: Apple A5 chip

Dark silicon can be an opportunity - modify use
of chip area to deliver value

Some applications consist of short bursts of
intense computation followed by long periods of
waiting for user input

For these short bursts responsiveness can be
improved by transiently exceeding the chip’s
sustainable thermal limits do deliver a brief but
intense burst of computation

What is
‘sprinting’?

Computational Sprinting
o Activate reserve cores (parallel sprinting)
o Increase frequency or voltage (frequency sprinting)

Increases power consumption to levels beyond
the system’s cooling capacity as determined by
its TDP

Exploits thermal capacitance to buffer (absorb
and hold) heat and then release it to the
ambient after the sprint is over

Prior work on sprinting was based on modelling
and simulation

The paper describes a concrete
implementation of sprinting on a
hardware/software testbed

Types of
Sprinting

Sprinting consumes much higher power than
normal execution (up to 5x)
The heat dissipated cause the chip
temperature to rise in matter of seconds
Temperature rise is gradual (over a few
seconds) and not instantaneous
Unabridged sprint

o Completes execution within the thermal capacitance of

the testbed, relatively simple to implement and
optimise
Truncated Sprints

o Sprints that must be stopped due to thermal limits of

the testbed, relatively more complicated
implementation

Major
contribution

Show that current sources of thermal
capacitance are sufficient for 5x intensity
sprints for up to a few seconds of duration
Demonstrate that parallel sprinting can improve
energy efficiency

|dentify potential inefficiencies of truncating
sprints and propose sprint-aware task-based
runtime as a remedy

Augmentation of the testbed with a
phase-change heat sink

Demonstrate that sprint-and-rest thermally
constrained (sustained) execution for
long-running computations

Sprinting
Testbed
Hardware

e Testbed features:

0O O O O O O

Intel Core i7 2600 Quad-core ‘Sandy-Bridge”
Small variable speed fan

Integrated heat spreader

Lowest configurable frequency = 1.6GHz
Highest configurable frequency = 3.2 GHz
Power draw of single core @ 1.6GHz = 9.5W
Power draw with 4 cores @ 3.2GHz = 50W (5x)

e Variable Fan

(@)

Sustainable TDP can be varied by varying the fan
speed

Speed tuned such that the die temperature saturates at
75 C

The fan is required for indefinitely running even a
single core at min frequency/voltage

Sprinting
Testbed
Hardware

e Integrated Heat Spreader

O

(@)

Testbed has no heat sink (like a mobile system)
It has a copper IHS that spreads heat
m On the die to reduce hotspot)

m From the die to the top of the package (to
facilitate cooling)

Based on copper’s chemical characteristics, an idle
temperature of 50 C and a max. Temperature of 75 C
during sprinting, the IHS can store 188J of heat

This leads us to a theoretical limit on the duration of the
sprint = 4.7s at 40W above the sustainable TDP(50W
in total)

But head spreading is not instantaneous, thus the
actual limit is slightly lower

(a) Testbed setup

Die Thermal Interface MWaterial

Integrated Heat Spreader

(b) Package internals

Unabridged
Sprint

Estimate for sprint duration = 4.7s

Actual value based on experimental trials @
3.2Ghz with 4 cores = 3s

Theoretical speedup benefit = 8x

(2x freq., 4x cores)

Total power dissipated = 50W (5x sustainable)
Benchmarks used: workloads from image and
vision processing domains

Experiments:
o Maximum intensity sprints with each workload

o Comparison of power and temperature between

sustainable and max. Intensity sprint for single
workload (sobel)

60

[Kernel | Description | - . sprint
sobel Edge detection filter; parallelized with OpenMP % 401 | | .. sustained
disparity | Stereoimage disparity detection; adapted from [51] 5 .
segment Image feature classification; adapted from [51] = 90 -
kmeans Partition-based clustering; parallelized with OpenMP 2
feature Feature extraction (SURF) from [14] e [RFSE TS R e F s
texture [magecomposiﬁon;adaptedfromlsl] 0 LA LA L L L L L L B LB LB LR
0 10 20 30 40
Table 1. Parallel workloads used to evaluate sprinting. time (s)
(a) Power
[= 8 —
= &
2 67 o ;
= B " s s }
g 4- = S0 du
N o
g 7 E A4 e sustained
g 30 |’||I|f|||'llllIII'Il'lfI!I'IlIllll'll'lllll'lllllll
0- 0 10 20 30 40
sobel disparity segment kmeans feature texture time (s)

(b) Temperature
Figure 2. Speedup benefits of unabridged sprinting using four
cores at 3.2 Ghz over a single-core 1.6 Ghz baseline. Figure 3. Chip power and thermal behavior for sustained and
sprinting operation.

Analysis of
Unabridged
Sprinting
experiments

Sprinting can result in net gains in energy
efficiency by:
o Amortizing the fixed uncore power consumption over a

larger number of active cores
o Capturing race-to-idle effects

When both frequency and voltage are
increased, a super-linear increase in power
However, the observed increase is sub-linear
Last level cache and ring-interconnect are
always active and add to the ‘uncore’ power of
the chip

Thus when no. of cores is quadrupled, power
consumption only increases power by 2x

Analysis of
Unabridged
Sprinting
experiments

Sprinting with lower frequency can improve
energy efficiency

Power consumption falls much more than
speedup

Energy consumption for the overall
computation is less at lower clock frequencies
Total energy = Sprint energy + idle energy
This sum can then be compared to the much
slower sustainable computation (1 core @
1.6GHz)

Ignoring idle power, sprinting consumes -30%
at maximum frequency (up to -40% at lower
frequencies)

But with idle power, energy consumed is +21%
whereas for 1.6Ghz it is -6%

o0

=%
=
8 6
o
ol
E 4
-
1.5
g 5 o o Idle
=1} .
= 5 B Sprint
=} 0 5 1.0 4
o Dlo RSl el HERrDlo HoEDle YR Dio -
VNN AN RN RN RS et g
sobel disparitysegment kmeans feature texture = 05-
(a) Speedup E
b=
O'O_N ROl VeuDb NEwDle HERDL KB %D
a_). 6 "’J"\r"\r"'\r'\ MTYTY YN MTYORYNY SyTyOVOY Sy MITVDTY™ Tyt
= sobel disparitysegment kmeans feature texture
)
=%
= (c) Energy
g 4
a Figure 4. Speedup, power, and energy (normalized to the one-core
- 1.6 GHz sustainable baseline) for four cores across frequencies.
S 24
s
E _
= 0 YRR RO YHRDL YHRIL YoRIb
VAN T ATy TR TR RN

sobel dlsparltysegmcnt kmeans feature texture
(b) Power

Analysis of
Unabridged
Sprinting
experiments

Even on current chips that are not built with
sprinting in mind, sprinting can actually reduce
total energy consumption if the clock frequency
is appropriately chosen

|dle power acts as a spoiler for sprinting

But there are encouraging signs of reduction in
idle power

Energy efficiency advantages of sprinting
increase rapidly as idle power decreases

Eg.: NVIDIA Tegra 3's vSMP/4-plus-1,

ARM'’s big.LITTLE multicores that seek to
aggressively reduce idle power

Truncated e System must avoid overheating for
computation that cannot be completed entirely

sprlnts within one sprint duration

e Software for throttling frequency and
deactivating all but one core

e For some workloads, migrating threads to a
single core can cause significant overheads
leading to degradation in performance and
energy efficiency

e Mitigation of these overheads becomes
necessary to make sprinting energy efficient
vis-a-vis sustainable non-sprinting mode

Truncated
Sprints -
Implementing
and
Evaluating

Truncation

Testbed software monitors die temperature
using the on-die temperature sensor

When temperature exceeds T(max), the
software truncates the sprint by

o Pinning all threads to a single core thus forcing the OS
to migrate threads
o Disabling the now-idle cores

o Changing frequency of the single remaining core to the
lowest possible frequency (1.6GHz)

This process is completed using system calls
and the standard Linux ACPI interface

When the temperature reaches T(max), the
power falls abruptly from 55W to 9.5W

The temperature stops rising as the system’s
power consumption now matches the rate of
coolina dissipation

60

sprint
=t (A N . sustained
B
2 20—
= I
0 1 | A B 1 1
0 10 20 30 40
time (s)
(a) Power
o O] Tmax
< 70 -
L
E 60 =3 .--'Mi 7
g 799 sprint
E 43 sustained
30 haleasass [ELEET G T REz=aopan T
0 10 20 30 40

time (s)
(b) Temperature

Figure 5. Power and thermal response for truncated sprints.

2.7

@ Sustained
15 B Sprint

normalized runtime

1Sparity segment texture

(a) Runtime

| Idle 30
2.0 @ Sustained
15 O Sprint

normalized energy
p—
o
|

0.0- L

disparity segment texture

(b) Energy

Figure 6. Runtime and energy spent during sprinting, sustained, and idle modes for 4-core sprints at 3.2 Ghz (normalized to the one-core
1.6 Ghz baseline.) Bars represent increasing computation lengths from left to right.

Truncated
Sprints -
Performance
and Energy
Penalties

Varying computation lengths lead to different
degrees of responsiveness

As computation length increases beyond the
sprint capacity, greater proportion of the time is
spent computing in sustainable mode

Thus, the gain from sprinting reduces as the
length of computations increases

Anomaly: Truncated sprinting is slower than
sustainable mode for two workloads
Degradation in responsiveness occurs due to
multiplexing of all threads on a single core
Leads to one or more of known issues such as
contention on synchronization, load imbalance,
convoying and frequent context switches

Truncated
Sprints:
Mitigating
Overheads

Penalty of oversubscription causes the ‘do no
harm’ policy of sprinting to fail

Problem particularly acute for two workloads:
feature and texture

Experiment to test such penalties:

o Spawn N threads and run them on a single core;
measure runtime

normalized runtime

feature texture

Figure 7. Runtime penalty from oversubscription with increasing
numbers of threads on a single core.

Truncated
Sprints:
Resolving
Over-
subscription

Penalties

Sprint-aware task-based parallel runtime to
mitigate oversubscription penalties

Number of software threads must be changed
dynamically

Task-queue based worker thread execution
framework

Application is divided into tasks but program is
not aware of the number of worker threads
Worker thread will first execute tasks in its local
queue; if that queue is empty, it steals a task
from another queue to execute

The core-oblivious nature and implicit load
balancing through task stealing aids in
dynamically changing the number of active
threads

Truncated
Sprints:
Resolving
Over-
subscription

Penalties

To reduce the number of threads, we just put
that thread to sleep once it completes its
current task

The remaining tasks in this worker, if any, are
eventually stolen by the other active threads
Before dequeuing the next task, a worker will
check the value of a shared variable; this
variable stores the desired number of threads
that should be active

If the worker’s thread id > desired number, the
thread sleeps and all of its tasks are stolen by
the one remaining thread running on the single
core

This main thread also edits the value of the
shared variable

Truncated
Sprints:
Resolving
Over-
subscription

Penalties

normalized speedup

S =W Oy] OO

The new system does not completely replace
the older thread migration and core disabling
mechanism

The older mechanism is required in the case
when a worker thread that must be put to sleep
is running a long task and the task must be
suspended and migrated to avoid overheating
Workload texture is modified to test the new
mechanism

—e— texture unmodified
--=-- texture task-based

—e— texture unmodified

--<-- texture task-based o 00:0:0:0:0-0-0-0-0-0-0-0-0

normalized energy
o - N w =

T T T T T T]
50 100 150 200

SRR A W S D S A S S S S 'Y worksize (sustained runtime in seconds)

L
50 100 150 200

(b) Energy

Figure 8. Speedup and energy comparison of the unmodified
worksize (sustained runtime in seconds) threaded and task-based implementations of texture.

(a) Speedup

Truncated
Sprints:
Pacing

Sprint pacing is a technique that determines
what is the optimum frequency for a particular
workload so that we get the best
responsiveness

For short durations, maximum intensity sprint
achieves best responsiveness

For large computations, responsiveness is not
better than sustainable mode

For intermediate computation lengths, the
optimal mode is not always maximum sprint
intensity (just as for humans)

—»— 32 GHz

- -0- 2.8GHz
---0-- 24 GHz
—&— 2.0 GHz
—--A- 1.6 GHz

normalized speedup
S =R WRERULOJ00

1 T 1T "
20 40 60 80 100

worksize (baseline runtime in seconds)
(a) Speedup

12
o)
&ﬂ
g —»— 3.2 GHz
2 ~o- 28GHz
2 1.0-pepg: --¢-- 24 GHz
= —=— 2.0GHz
£ BAAANSAASNANNAAN i 8707 —A- 1.6 GHz
2

0.8 T T T

T : — 71 *]

20 40 60 80 100

worksize (baseline runtime in seconds)
(b) Energy

Figure 9. Speedup and energy versus size of computation for
sprinting with four cores at different differences.

Truncated e The respor.13|veness gain by doubling
frequency is at most 2x

Sprlnts: e But max. Sprint duration @1.6GHz is 6.3x that
Pacing @3.ZGHZ |
e A 1.6GHz sprint can complete over 3x more
work
e Reasons:

o Low frequency and voltage use less thermal
capacitance per unit work

o Longer duration of the sprint allows heat to be
dissipated to ambient during the sprint

o Makx. intensity sprints do not fully exploit thermal
capacitance due to lateral heat conduction delay;

low-intensity sprints utilise more thermal capacitance
by allowing time for heat to spread

Truncated
Sprints:
Pacing
policy

Most critical factor in sprint pacing policy is
length of computation
Two approaches considered,

o Predictive sprinting
o Adaptive sprinting
Predictive Sprinting (Static)
o Predict the length of computation using support from

h/w, OS or application
o Determine the appropriate sprint frequency

Adaptive Sprinting (Dynamic)
o Sprint pacing policy dynamically adapts to requirement
to get the best-case benefit for short computations
o Moves to a less intense sprint mode to extend the

duration of sprint for longer computations where it
improves responsiveness

Truncated
Sprints:
Pacing
policy

normalized speedup

SR WRkUONI00

e Experiment to test adaptive pacing policy

e Sprint policy: Sprint at full intensity until half the
thermal capacitance is used, then switch to
lowest frequency (no. of cores remains

constant)

—— adaptive
— 0— 4 cores, 1.6 GHz

—_
(Re]

—>— adaptive
- -0— 4cores, 1.6 GHz
--9-- 4cores, 3.2 GHz

¢
g% %00 -@-- 4 cores, 3.2 GHz

‘@e -
©00000
©00-0- 000000000

(500000000

000000000000 0000 o
08 —F——"TF—"T—"—T——T—
20 40 60 80 100 120
worksize (baseline runtime in seconds)
(b) Energy

Figure 11. Speedup and energy for sprinting based on an adaptive
allocation of sprint budget between the most responsive and most
energy efficient schemes.

° ' 0O
$000000000-0- 000000008

normalized energy
—_
o

— 1 - T T ' T " T 1
20 40 60 80 100 120

worksize (baseline runtime in seconds)
(a) Speedup

Extend | ng e Specific heat vs Iatgnt heat
] e Heat absorbed during phase change does not

Sprlnts: contribute to increase in temperature

Latent Heat e Thus more time can be gained before
temperature reaches T(max)

e One gram of copper heat spreader can absorb
11.5J of heat, one gram of a phase change
material can absorb 200J or more

e EXxperiment:

o PCM-Paraffin wax infused in Doucel aluminium and
enclosed in copper

o Sprints with 4 cores @ 1.6GHz with three types of
thermal capacitance arrangements: heat spreader

alone, empty foam (only aluminium and copper) and
PCM (paraffin wax) addition

empty foam wax

(with foam)

g —air | water
~ 70
<
§60
g
2 50
:
= 40

30 e

0 100 200 300 400
time (s)

Die Thermal Interface Material

Figure 13. Comparison of sprinting thermal response with and
Phase Change Material Integrated Heat Spreader without PCM.

(b) Cross-section of phase change material on the package

Figure 12. Testbed augmented with phase-change material.

Extending
Sprints:
Latent Heat

Adding copper container and aluminium foam
alone (empty foam) increases thermal
capacitance due to additional specific heat and
increases the baseline sprint duration (37s vs
20s)

Addition of 4g paraffin wax enables the testbed
to sprint for 120s - 6x over the baseline
Reasons:

o Additional 40s of sprint time due to the melting of
paraffin wax (can absorb about 800J of heat)

o Rest of the time is achieved as heat accumulated is
dissipated to the ambient during the phase change

o Specific heat of paraffin wax also contributes to a
lesser extent

