


Background ● Inflection point for CMOS scaling due to 
thermal constraints causing the advent of dark 
silicon

● Problem is particularly acute in mobile 
hand-held devices e.g.: Apple A5 chip

● Dark silicon can be an opportunity - modify use 
of chip area to deliver value

● Some applications consist of short bursts of 
intense computation followed by long periods of 
waiting for user input

● For these short bursts responsiveness can be 
improved by transiently exceeding the chip’s 
sustainable thermal limits do deliver a brief but 
intense burst of computation



What is 
‘sprinting’?

● Computational Sprinting 
○ Activate reserve cores (parallel sprinting)
○ Increase frequency or voltage (frequency sprinting)

● Increases power consumption to levels beyond 
the system’s cooling capacity as determined by 
its TDP

● Exploits thermal capacitance to buffer (absorb 
and hold) heat and then release it to the 
ambient after the sprint is over

● Prior work on sprinting was based on modelling 
and simulation 

● The paper describes a concrete 
implementation of sprinting on a 
hardware/software testbed



Types of 
Sprinting

● Sprinting consumes much higher power than 
normal execution ( up to 5x ) 

● The heat dissipated cause the chip 
temperature to rise in matter of seconds

● Temperature rise is gradual (over a few 
seconds) and not instantaneous

● Unabridged sprint
○ Completes execution within the thermal capacitance of 

the testbed, relatively simple to implement and 
optimise

● Truncated Sprints
○ Sprints that must be stopped due to thermal limits of 

the testbed, relatively more complicated 
implementation



Major 
contribution

● Show that current sources of thermal 
capacitance are sufficient for 5x intensity 
sprints for up to a few seconds of duration

● Demonstrate that parallel sprinting can improve 
energy efficiency

● Identify potential inefficiencies of truncating 
sprints and propose sprint-aware task-based 
runtime as a remedy

● Augmentation of the testbed with a 
phase-change heat sink

● Demonstrate that sprint-and-rest thermally 
constrained (sustained) execution for 
long-running computations



Sprinting 
Testbed 
Hardware

● Testbed features:
○ Intel Core i7 2600 Quad-core ‘Sandy-Bridge”
○ Small variable speed fan 
○ Integrated heat spreader
○ Lowest configurable frequency = 1.6GHz
○ Highest configurable frequency = 3.2 GHz
○ Power draw of single core @ 1.6GHz = 9.5W
○ Power draw with 4 cores @ 3.2GHz = 50W (5x)

● Variable Fan
○ Sustainable TDP can be varied by varying the fan 

speed

○ Speed tuned such that the die temperature saturates at 
75 C

○ The fan is required for indefinitely running even a 
single core at min frequency/voltage 



Sprinting 
Testbed 
Hardware

● Integrated Heat Spreader
○ Testbed has no heat sink (like a mobile system)
○ It has a copper IHS that spreads heat

■ On the die to reduce hotspot)

■ From the die to the top of the package (to 
facilitate cooling)

○ Based on copper’s chemical characteristics, an idle 

temperature of 50 C and a max. Temperature of 75 C 
during sprinting, the IHS can store 188J of heat

○ This leads us to a theoretical limit on the duration of the 

sprint = 4.7s at 40W above the sustainable TDP(50W 
in total)

○ But head spreading is not instantaneous, thus the 
actual limit is slightly lower





Unabridged 
Sprint

● Estimate for sprint duration = 4.7s
● Actual value based on experimental trials @ 

3.2Ghz with 4 cores = 3s
● Theoretical speedup benefit = 8x                   

(2x freq., 4x cores)
● Total power dissipated = 50W (5x sustainable)
● Benchmarks used: workloads from image and 

vision processing domains
● Experiments:

○ Maximum intensity sprints with each workload

○ Comparison of power and temperature between 

sustainable and max. Intensity sprint for single 
workload (sobel)





Analysis of 
Unabridged 
Sprinting 
experiments

● Sprinting can result in net gains in energy 
efficiency by:

○ Amortizing the fixed uncore power consumption over a 
larger number of active cores

○ Capturing race-to-idle effects

● When both frequency and voltage are 
increased, a super-linear increase in power

● However, the observed increase is sub-linear
● Last level cache and ring-interconnect are 

always active and add to the ‘uncore’ power of 
the chip

● Thus when no. of cores is quadrupled, power 
consumption only increases power by 2x



Analysis of 
Unabridged 
Sprinting 
experiments

● Sprinting with lower frequency can improve 
energy efficiency

● Power consumption falls much more than 
speedup 

● Energy consumption for the overall 
computation is less at lower clock frequencies 

● Total energy = Sprint energy + idle energy
● This sum can then be compared to the much 

slower sustainable computation (1 core @ 
1.6GHz) 

● Ignoring idle power, sprinting consumes -30% 
at maximum frequency (up to -40% at lower 
frequencies)

● But with idle power, energy consumed is +21% 
whereas for 1.6Ghz it is -6%





Analysis of 
Unabridged 
Sprinting 
experiments

● Even on current chips that are not built with 
sprinting in mind, sprinting can actually reduce 
total energy consumption if the clock frequency 
is appropriately chosen  

● Idle power acts as a spoiler for sprinting
● But there are encouraging signs of reduction in 

idle power
● Energy efficiency advantages of sprinting 

increase rapidly as idle power decreases 
● Eg.: NVIDIA Tegra 3’s vSMP/4-plus-1,         

ARM’s big.LITTLE multicores that seek to 
aggressively reduce idle power 



Truncated 
sprints

● System must avoid overheating for 
computation that cannot be completed entirely 
within one sprint duration

● Software for throttling frequency and 
deactivating all but one core

● For some workloads, migrating threads to a 
single core can cause significant overheads 
leading to degradation in performance and 
energy efficiency

● Mitigation of these overheads becomes 
necessary to make sprinting energy efficient 
vis-a-vis sustainable non-sprinting mode



Truncated 
Sprints - 
Implementing 
and 
Evaluating 
Truncation

● Testbed software monitors die temperature 
using the on-die temperature sensor

● When temperature exceeds T(max), the 
software truncates the sprint by

○ Pinning all threads to a single core thus forcing the OS 
to migrate threads

○ Disabling the now-idle cores

○ Changing frequency of the single remaining core to the 
lowest possible frequency (1.6GHz)

● This process is completed using system calls 
and the standard Linux ACPI interface

● When the temperature reaches T(max), the 
power falls abruptly from 55W to 9.5W

● The temperature stops rising as the system’s 
power consumption now matches the rate of 
cooling dissipation







Truncated 
Sprints - 
Performance 
and Energy 
Penalties 

● Varying computation lengths lead to different 
degrees of responsiveness

● As computation length increases beyond the 
sprint capacity, greater proportion of the time is 
spent computing in sustainable mode

● Thus, the gain from sprinting reduces as the 
length of computations increases

● Anomaly: Truncated sprinting is slower than 
sustainable mode for two workloads

● Degradation in responsiveness occurs due to 
multiplexing of all threads on a single core

● Leads to one or more of known issues such as 
contention on synchronization, load imbalance, 
convoying and frequent context switches



Truncated 
Sprints:
Mitigating 
Overheads

● Penalty of oversubscription causes the ‘do no 
harm’ policy of sprinting to fail

● Problem particularly acute for two workloads: 
feature and texture

● Experiment to test such penalties:
○ Spawn N threads and run them on a single core; 

measure runtime



Truncated 
Sprints:
Resolving 
Over-
subscription 
Penalties

● Sprint-aware task-based parallel runtime to 
mitigate oversubscription penalties

● Number of software threads must be changed 
dynamically

● Task-queue based worker thread execution 
framework

● Application is divided into tasks but program is 
not aware of the number of worker threads

● Worker thread will first execute tasks in its local 
queue; if that queue is empty, it steals a task 
from another queue to execute

● The core-oblivious nature and implicit load 
balancing through task stealing aids in 
dynamically changing the number of active 
threads



Truncated 
Sprints:
Resolving 
Over-
subscription 
Penalties

● To reduce the number of threads, we just put 
that thread to sleep once it completes its 
current task

● The remaining tasks in this worker, if any, are 
eventually stolen by the other active threads

● Before dequeuing the next task, a worker will 
check the value of a shared variable; this 
variable stores the desired number of threads 
that should be active

● If the worker’s thread id > desired number, the 
thread sleeps and all of its tasks are stolen by 
the one remaining thread running on the single 
core

● This main thread also edits the value of the 
shared variable



Truncated 
Sprints:
Resolving 
Over-
subscription 
Penalties

● The new system does not completely replace 
the older thread migration and core disabling 
mechanism

● The older mechanism is required in the case 
when a worker thread that must be put to sleep 
is running a long task and the task must be 
suspended and migrated to avoid overheating

● Workload texture is modified to test the new 
mechanism



Truncated 
Sprints:
Pacing

● Sprint pacing is a technique that determines 
what is the optimum frequency for a particular 
workload so that we get the best 
responsiveness

● For short durations, maximum intensity sprint 
achieves best responsiveness

● For large computations, responsiveness is not 
better than sustainable mode

● For intermediate computation lengths, the 
optimal mode is not always maximum sprint 
intensity (just as for humans)





Truncated 
Sprints:
Pacing

● The responsiveness gain by doubling 
frequency is at most 2x

● But max. Sprint duration @1.6GHz is 6.3x that 
@3.2GHz

● A 1.6GHz sprint can complete over 3x more 
work 

● Reasons:
○ Low frequency and voltage use less thermal 

capacitance per unit work

○ Longer duration of the sprint allows heat to be 
dissipated to ambient during the sprint

○ Max. intensity sprints do not fully exploit thermal 

capacitance due to lateral heat conduction delay; 

low-intensity sprints utilise more thermal capacitance 
by allowing time for heat to spread 



Truncated 
Sprints:
Pacing 
policy

● Most critical factor in sprint pacing policy is 
length of computation

● Two approaches considered;
○ Predictive sprinting
○ Adaptive sprinting

● Predictive Sprinting (Static)
○ Predict the length of computation using support from 

h/w, OS or application
○ Determine the appropriate sprint frequency

● Adaptive Sprinting (Dynamic)
○ Sprint pacing policy dynamically adapts to requirement 

to get the best-case benefit for short computations

○ Moves to a less intense sprint mode to extend the 

duration of sprint for longer computations where it 
improves responsiveness



Truncated 
Sprints:
Pacing 
policy

● Experiment to test adaptive pacing policy
● Sprint policy: Sprint at full intensity until half the 

thermal capacitance is used, then switch to 
lowest frequency (no. of cores remains 
constant)



Extending 
Sprints:
Latent Heat

● Specific heat vs latent heat
● Heat absorbed during phase change does not 

contribute to increase in temperature
● Thus more time can be gained before 

temperature reaches T(max)
● One gram of copper heat spreader can absorb 

11.5J of heat, one gram of a phase change 
material can absorb 200J or more

● Experiment:
○ PCM-Paraffin wax infused in Doucel aluminium and 

enclosed in copper

○ Sprints with 4 cores @ 1.6GHz with three types of 

thermal capacitance arrangements: heat spreader 

alone, empty foam ( only aluminium and copper ) and 
PCM (paraffin wax) addition





Extending 
Sprints:
Latent Heat

● Adding copper container and aluminium foam 
alone (empty foam) increases thermal 
capacitance due to additional specific heat and 
increases the baseline sprint duration (37s vs 
20s)

● Addition of 4g paraffin wax enables the testbed 
to sprint for 120s - 6x over the baseline

● Reasons:
○ Additional 40s of sprint time due to the melting of 

paraffin wax (can absorb about 800J of heat)

○ Rest of the time is achieved as heat accumulated is 
dissipated to the ambient during the phase change

○ Specific heat of paraffin wax also contributes to a 
lesser extent


