

Background ● Inflection point for CMOS scaling due to
thermal constraints causing the advent of dark
silicon

● Problem is particularly acute in mobile
hand-held devices e.g.: Apple A5 chip

● Dark silicon can be an opportunity - modify use
of chip area to deliver value

● Some applications consist of short bursts of
intense computation followed by long periods of
waiting for user input

● For these short bursts responsiveness can be
improved by transiently exceeding the chip’s
sustainable thermal limits do deliver a brief but
intense burst of computation

What is
‘sprinting’?

● Computational Sprinting
○ Activate reserve cores (parallel sprinting)
○ Increase frequency or voltage (frequency sprinting)

● Increases power consumption to levels beyond
the system’s cooling capacity as determined by
its TDP

● Exploits thermal capacitance to buffer (absorb
and hold) heat and then release it to the
ambient after the sprint is over

● Prior work on sprinting was based on modelling
and simulation

● The paper describes a concrete
implementation of sprinting on a
hardware/software testbed

Types of
Sprinting

● Sprinting consumes much higher power than
normal execution (up to 5x)

● The heat dissipated cause the chip
temperature to rise in matter of seconds

● Temperature rise is gradual (over a few
seconds) and not instantaneous

● Unabridged sprint
○ Completes execution within the thermal capacitance of

the testbed, relatively simple to implement and
optimise

● Truncated Sprints
○ Sprints that must be stopped due to thermal limits of

the testbed, relatively more complicated
implementation

Major
contribution

● Show that current sources of thermal
capacitance are sufficient for 5x intensity
sprints for up to a few seconds of duration

● Demonstrate that parallel sprinting can improve
energy efficiency

● Identify potential inefficiencies of truncating
sprints and propose sprint-aware task-based
runtime as a remedy

● Augmentation of the testbed with a
phase-change heat sink

● Demonstrate that sprint-and-rest thermally
constrained (sustained) execution for
long-running computations

Sprinting
Testbed
Hardware

● Testbed features:
○ Intel Core i7 2600 Quad-core ‘Sandy-Bridge”
○ Small variable speed fan
○ Integrated heat spreader
○ Lowest configurable frequency = 1.6GHz
○ Highest configurable frequency = 3.2 GHz
○ Power draw of single core @ 1.6GHz = 9.5W
○ Power draw with 4 cores @ 3.2GHz = 50W (5x)

● Variable Fan
○ Sustainable TDP can be varied by varying the fan

speed

○ Speed tuned such that the die temperature saturates at
75 C

○ The fan is required for indefinitely running even a
single core at min frequency/voltage

Sprinting
Testbed
Hardware

● Integrated Heat Spreader
○ Testbed has no heat sink (like a mobile system)
○ It has a copper IHS that spreads heat

■ On the die to reduce hotspot)

■ From the die to the top of the package (to
facilitate cooling)

○ Based on copper’s chemical characteristics, an idle

temperature of 50 C and a max. Temperature of 75 C
during sprinting, the IHS can store 188J of heat

○ This leads us to a theoretical limit on the duration of the

sprint = 4.7s at 40W above the sustainable TDP(50W
in total)

○ But head spreading is not instantaneous, thus the
actual limit is slightly lower

Unabridged
Sprint

● Estimate for sprint duration = 4.7s
● Actual value based on experimental trials @

3.2Ghz with 4 cores = 3s
● Theoretical speedup benefit = 8x

(2x freq., 4x cores)
● Total power dissipated = 50W (5x sustainable)
● Benchmarks used: workloads from image and

vision processing domains
● Experiments:

○ Maximum intensity sprints with each workload

○ Comparison of power and temperature between

sustainable and max. Intensity sprint for single
workload (sobel)

Analysis of
Unabridged
Sprinting
experiments

● Sprinting can result in net gains in energy
efficiency by:

○ Amortizing the fixed uncore power consumption over a
larger number of active cores

○ Capturing race-to-idle effects

● When both frequency and voltage are
increased, a super-linear increase in power

● However, the observed increase is sub-linear
● Last level cache and ring-interconnect are

always active and add to the ‘uncore’ power of
the chip

● Thus when no. of cores is quadrupled, power
consumption only increases power by 2x

Analysis of
Unabridged
Sprinting
experiments

● Sprinting with lower frequency can improve
energy efficiency

● Power consumption falls much more than
speedup

● Energy consumption for the overall
computation is less at lower clock frequencies

● Total energy = Sprint energy + idle energy
● This sum can then be compared to the much

slower sustainable computation (1 core @
1.6GHz)

● Ignoring idle power, sprinting consumes -30%
at maximum frequency (up to -40% at lower
frequencies)

● But with idle power, energy consumed is +21%
whereas for 1.6Ghz it is -6%

Analysis of
Unabridged
Sprinting
experiments

● Even on current chips that are not built with
sprinting in mind, sprinting can actually reduce
total energy consumption if the clock frequency
is appropriately chosen

● Idle power acts as a spoiler for sprinting
● But there are encouraging signs of reduction in

idle power
● Energy efficiency advantages of sprinting

increase rapidly as idle power decreases
● Eg.: NVIDIA Tegra 3’s vSMP/4-plus-1,

ARM’s big.LITTLE multicores that seek to
aggressively reduce idle power

Truncated
sprints

● System must avoid overheating for
computation that cannot be completed entirely
within one sprint duration

● Software for throttling frequency and
deactivating all but one core

● For some workloads, migrating threads to a
single core can cause significant overheads
leading to degradation in performance and
energy efficiency

● Mitigation of these overheads becomes
necessary to make sprinting energy efficient
vis-a-vis sustainable non-sprinting mode

Truncated
Sprints -
Implementing
and
Evaluating
Truncation

● Testbed software monitors die temperature
using the on-die temperature sensor

● When temperature exceeds T(max), the
software truncates the sprint by

○ Pinning all threads to a single core thus forcing the OS
to migrate threads

○ Disabling the now-idle cores

○ Changing frequency of the single remaining core to the
lowest possible frequency (1.6GHz)

● This process is completed using system calls
and the standard Linux ACPI interface

● When the temperature reaches T(max), the
power falls abruptly from 55W to 9.5W

● The temperature stops rising as the system’s
power consumption now matches the rate of
cooling dissipation

Truncated
Sprints -
Performance
and Energy
Penalties

● Varying computation lengths lead to different
degrees of responsiveness

● As computation length increases beyond the
sprint capacity, greater proportion of the time is
spent computing in sustainable mode

● Thus, the gain from sprinting reduces as the
length of computations increases

● Anomaly: Truncated sprinting is slower than
sustainable mode for two workloads

● Degradation in responsiveness occurs due to
multiplexing of all threads on a single core

● Leads to one or more of known issues such as
contention on synchronization, load imbalance,
convoying and frequent context switches

Truncated
Sprints:
Mitigating
Overheads

● Penalty of oversubscription causes the ‘do no
harm’ policy of sprinting to fail

● Problem particularly acute for two workloads:
feature and texture

● Experiment to test such penalties:
○ Spawn N threads and run them on a single core;

measure runtime

Truncated
Sprints:
Resolving
Over-
subscription
Penalties

● Sprint-aware task-based parallel runtime to
mitigate oversubscription penalties

● Number of software threads must be changed
dynamically

● Task-queue based worker thread execution
framework

● Application is divided into tasks but program is
not aware of the number of worker threads

● Worker thread will first execute tasks in its local
queue; if that queue is empty, it steals a task
from another queue to execute

● The core-oblivious nature and implicit load
balancing through task stealing aids in
dynamically changing the number of active
threads

Truncated
Sprints:
Resolving
Over-
subscription
Penalties

● To reduce the number of threads, we just put
that thread to sleep once it completes its
current task

● The remaining tasks in this worker, if any, are
eventually stolen by the other active threads

● Before dequeuing the next task, a worker will
check the value of a shared variable; this
variable stores the desired number of threads
that should be active

● If the worker’s thread id > desired number, the
thread sleeps and all of its tasks are stolen by
the one remaining thread running on the single
core

● This main thread also edits the value of the
shared variable

Truncated
Sprints:
Resolving
Over-
subscription
Penalties

● The new system does not completely replace
the older thread migration and core disabling
mechanism

● The older mechanism is required in the case
when a worker thread that must be put to sleep
is running a long task and the task must be
suspended and migrated to avoid overheating

● Workload texture is modified to test the new
mechanism

Truncated
Sprints:
Pacing

● Sprint pacing is a technique that determines
what is the optimum frequency for a particular
workload so that we get the best
responsiveness

● For short durations, maximum intensity sprint
achieves best responsiveness

● For large computations, responsiveness is not
better than sustainable mode

● For intermediate computation lengths, the
optimal mode is not always maximum sprint
intensity (just as for humans)

Truncated
Sprints:
Pacing

● The responsiveness gain by doubling
frequency is at most 2x

● But max. Sprint duration @1.6GHz is 6.3x that
@3.2GHz

● A 1.6GHz sprint can complete over 3x more
work

● Reasons:
○ Low frequency and voltage use less thermal

capacitance per unit work

○ Longer duration of the sprint allows heat to be
dissipated to ambient during the sprint

○ Max. intensity sprints do not fully exploit thermal

capacitance due to lateral heat conduction delay;

low-intensity sprints utilise more thermal capacitance
by allowing time for heat to spread

Truncated
Sprints:
Pacing
policy

● Most critical factor in sprint pacing policy is
length of computation

● Two approaches considered;
○ Predictive sprinting
○ Adaptive sprinting

● Predictive Sprinting (Static)
○ Predict the length of computation using support from

h/w, OS or application
○ Determine the appropriate sprint frequency

● Adaptive Sprinting (Dynamic)
○ Sprint pacing policy dynamically adapts to requirement

to get the best-case benefit for short computations

○ Moves to a less intense sprint mode to extend the

duration of sprint for longer computations where it
improves responsiveness

Truncated
Sprints:
Pacing
policy

● Experiment to test adaptive pacing policy
● Sprint policy: Sprint at full intensity until half the

thermal capacitance is used, then switch to
lowest frequency (no. of cores remains
constant)

Extending
Sprints:
Latent Heat

● Specific heat vs latent heat
● Heat absorbed during phase change does not

contribute to increase in temperature
● Thus more time can be gained before

temperature reaches T(max)
● One gram of copper heat spreader can absorb

11.5J of heat, one gram of a phase change
material can absorb 200J or more

● Experiment:
○ PCM-Paraffin wax infused in Doucel aluminium and

enclosed in copper

○ Sprints with 4 cores @ 1.6GHz with three types of

thermal capacitance arrangements: heat spreader

alone, empty foam (only aluminium and copper) and
PCM (paraffin wax) addition

Extending
Sprints:
Latent Heat

● Adding copper container and aluminium foam
alone (empty foam) increases thermal
capacitance due to additional specific heat and
increases the baseline sprint duration (37s vs
20s)

● Addition of 4g paraffin wax enables the testbed
to sprint for 120s - 6x over the baseline

● Reasons:
○ Additional 40s of sprint time due to the melting of

paraffin wax (can absorb about 800J of heat)

○ Rest of the time is achieved as heat accumulated is
dissipated to the ambient during the phase change

○ Specific heat of paraffin wax also contributes to a
lesser extent

