
Energy Discounted Computing On
Multicore Smartphones
Meng Zhu & Kai Shen

Atul
Bhargav

Overview

● Energy constraints in a smartphone
○ Li-Ion Battery

● Arm big.LITTLE
○ Hardware Sharing

What is Energy Discounted Computing?

➔ Activation of first core consumes incurs much higher power
➔ Typical smartphone application have limited parallelism.
➔ So we can get rest of the core at deep energy discount.

Multicore Processors

➔ Latest smartphones are shipping with 4-8 cores
➔ They have different power saving states.
➔ Ex: C0, C1, C2.
➔ They enter different power saving states to adapt to different workloads.
➔ They use DVFS to achieve different power/performance setting.

Multicores are Energy Disproportional

➔ Modern processors are good at power gating
◆ When the system is idle, most parts of the CPU can be shut down

➔ Aggressive hardware sharing
◆ drive down cost
◆ reduce footprint
◆ save power

➔ Example: CPU on one socket usually share power rail and oscillator

ARM Cortex 15

Source:
http://www.arm.com/assets/images/C
ortex-A15-chip-diagram-16-LG.png

Multicores are Energy Disproportional...

➔ hardware sharing also affects the CPU idle states

Energy Constraints in a Smartphone

● Slow progress on battery technology, size restrictions
● Quadcore and Octacore processors popularity

Energy Constraints in a Smartphone

● Slow progress on battery technology, size restrictions
● Quadcore and Octacore processors popularity

Energy Constraints in a Smartphone

● Slow progress on battery technology, size restrictions
● Quadcore and Octacore processors popularity

Li-Ion Battery

http://www.intechopen.com/books/energy-storage-battery-materials-and-architectures-at-the-nanoscale

Energy Constraints in a Smartphone

● Slow progress on battery technology, size restrictions
○ Li Ion battery already at 80% energy density

● Quadcore and Octacore processors popularity

Energy Constraints in a Smartphone

● Slow progress on battery technology, size restrictions
○ Li Ion battery already at 80% energy density

● Quadcore and Octacore processors popularity
○ Heavily energy disproportional on smartphones

Disproportionate Power Consumption

SOC with ARM big.LITTLE

Idle States (‘C’ States)

SOC with ARM big.LITTLE

Advantages of BigLittle

Heterogenous Architecture (Uses all the cores)

● Automatic Task Allocation among the cores
○ Dependent on the work load

2x higher performance vs. LITTLE only

Up to 75% CPU powersavings vs. big only

ARM Big Little Architecture

ARM Big Little Architecture

Hardware Coherency

● Cache Coherent Interconnect (CCI)
● L1 and L2 snooping between clusters

Use of Multicores on Smartphones?

➔ Typical phone apps are built on event-driven, UI-centric framework
➔ Don’t have sufficient parallelism to utilize multiple cores simultaneously.
➔ Limited multi-processing

Hence,

➔ Co-run best effort task.

Best Effort Task(BET)

➔ Workloads that are meaningful to the user but do not involve direct
interaction.

➔ Loose quality-of-service requirements.

Upload & download

➔ Examples:
◆ Syncing data with cloud
◆ Posting on social websites
◆ Software/Update installation

➔ Significant energy consumption comes from the transmission module
➔ CPUs also consume substantial energy

◆ Compression/Decompression
◆ Encryption/Decryption

System Maintenance Work

➔ kswapd daemon scan for memory pages that can swapped out to free up
space

➔ dhd_dpc which analyzes network packets and scans for Wi-Fi hotspots
➔ Re-compiling the bytecode for better native performance
➔ May have timing constraints

Background Sensing & Proactive Tasks

➔ Using camera sensors to analyze facial expression or eye movement

➔ Siri can provide recommendations, news and applications even before one
asks for it.

While co-execution of applications on
multicore processors may improve the

energy efficiency, it also risks significant
interference on shared hardware resources,

memory bandwidth and last-level-cache
space in particular, and thereby leads to
poor interactive application performance

and degraded user experience.

Energy Discounted Computing

POWER STATE PRESERVATION

➔ CPU idle state, or ACPI “C” state
◆ Often long idle gaps between user interactions and CPUs entering deep sleep state.
◆ It is crucial to keep best-effort tasks from disrupting these idle periods.

◆ During active application executions, due to lack of parallelism, idle CPUs will often enter
per-core idle states.

◆ These shallow sleep states, do not save much energy.

◆ CPU scheduler needs to schedule best-effort tasks opportunistically in accordance with
interactive applications.

◆ So schedule Best Effort Task only if at-least one core is active

Energy Discounted Computing...

➔ Core frequency state, or ACPI “P” state
◆ CPUs use DVFS to quickly adjust power levels to conserve energy and meet performance

needs of different workloads.

◆ In our co-run scheme, the system should avoid raising the CPU frequency / voltage levels
for best-effort tasks.

◆ Otherwise, the extra energy consumption will negate the energy discount.

◆ At the same time, such caution should not affect the performance of interactive
applications.

◆ CPU frequency adjustment should only focus on the needs of interactive applications and
ignore the presence of best-effort tasks.

Energy Discounted Computing...

➔ Smartphone suspension state, or ACPI “S” state
◆ Systems in the suspension state consume very little energy by shutting down most parts

of the hardware, including the CPU and memory.

◆ On some platforms (notably Android), applications can prevent system suspension by
making explicit requests to the operating system.

◆ Best-effort tasks are not permitted to make such requests. The system should be able to
enter the suspension state regardless of best-effort tasks.

 Resource Contention Mitigation

➔ Co-running tasks on a multicore may slow down each other.
➔ One easy mitigation is: adjust CPU scheduling priority(nice value, cpu limit)

But,

➔ Due to the hardware resource sharing on multi-core processors, contention
could also result from shared hardware resources.

➔ Monitor the last-level-cache miss rate using PMU. Contention is identified
if the miss rate reaches a threshold

Implementation

➔ BUSY indicates the CPU is running normal tasks(e.g., interactive
applications),

➔ IDLE indicates the CPU is in idle state (regardless of the level of idle state),
➔ BEST-EFFORT indicates the CPU is running best-effort tasks,
➔ UNDEF is a transient state (e.g., during context switches).

Implementation

➔ Linux Control Groups

Implementation

➔ Linux Control Groups
◆ Linux Kernel Facility allowing grouping of tasks into tree

Implementation

➔ Linux Control Groups
◆ Linux Kernel Facility allowing grouping of tasks into tree
◆ Allows the groups for

● Priority allocation
● CPU resources
● Memory B/W
● Disk
● Network

Implementation

➔ BUSY indicates the CPU is running normal tasks(e.g., interactive
applications),

➔ IDLE indicates the CPU is in idle state (regardless of the level of idle state),
➔ BEST-EFFORT indicates the CPU is running best-effort tasks,
➔ UNDEF is a transient state (e.g., during context switches).

Implementation

➔ Non Work Conserving CPU scheduling

Linux Complete Fair Scheduler

Implementation

➔ Non Work Conserving CPU scheduling

Linux Complete Fair Scheduler

Non Work Conserving Scheduler

Implementation

➔ Non Work Conserving CPU scheduling

Linux Complete Fair Scheduler

Non Work Conserving Scheduler

Three options : nice , cpulimit ,cgroups

Implementation

➔ Non Work Conserving CPU scheduling
➔ Frequency Preservation

Implementation

➔ Non Work Conserving CPU scheduling
➔ Frequency Preservation
➔ Suspension Management

Implementation

➔ Non Work Conserving CPU scheduling
➔ Frequency Preservation
➔ Suspension Management

/sys/power/wake_unlock

Implementation

➔ Non Work Conserving CPU scheduling
➔ Frequency Preservation
➔ Suspension Management

/sys/power/wake_lock

/sys/power/wake_unlock.

Implementation

➔ Non Work Conserving CPU scheduling
➔ Frequency Preservation
➔ Suspension Management

/sys/power/wake_lock

Reject requests from best effort tasks for wake-lock

Implementation

➔ Non Work Conserving CPU scheduling
➔ Frequency Preservation
➔ Suspension Management
➔ Contention Triggered Throttling

Implementation

➔ Contention Triggered Throttling

performance monitoring unit:

ARMV7 A15 PERFCTR L2 CACHE REFILL READ

ARMV7 A15 PERFCTR L2 CACHE REFILL WRITE as L2

Implementation

➔ Contention Triggered Throttling

performance monitoring unit:

ARMV7 A15 PERFCTR L2 CACHE REFILL READ

ARMV7 A15 PERFCTR L2 CACHE REFILL WRITE as L2

Update at 20 ms granularity

Implementation

➔ Non Work Conserving CPU scheduling -> C State Preservation
➔ Frequency Preservation -> P State Preservation
➔ Suspension Management -> S state Preservation
➔ Contention Triggered Throttling -> Contention Mitigation

Experimental Setup

Device: Huawei Mate7 (late 2014)

– 1.8 GHz ARM Cortex-A15 Quad Core

– 32KB/32KB L1 instruction and data cache

– 2MB L2 cache, 2GB RAM with 12.8 GBps

– Power measurement using Monsoon power meter with smartphone
battery detached

Benchmarks

Interactive application:

– Bbench: load locally cached websites

– Angry bird: casual game

Best-effort tasks: Spin, Compression, Encryption,

- AppOpt, FaceAnalysis

Test Flow

● Use automate UI testing tools (RERAN[1]) to minimize variations
● Launch two applications roughly at the same time
● Configure the workload such that application executions mostly overlap

Related Work

● CARROLL , A., AND HEISER, G. An analysis of power consumption in a
smartphone. In Proc. of the USENIX 2010.

● C ARROLL , A., AND H EISER , G. Mobile multicores: use them or waste
them. In Proc. of the Workshop on Power-Aware Computing and System
(HotPower) (Nov. 2013).

● SONG , W., S UNG , N., C HUN , B.-G., AND KIM , J. Reducing energy
consumption of smartphones using user-perceived response time
analysis. Santa Bar-bara, CA, Feb. 2014

●

Test Flow

● Use automate UI testing tools (RERAN[1]) to minimize variations
● Launch two applications roughly at the same time
● Configure the workload such that application executions mostly overlap

BBench

BBench

AngryBird

AngryBird

BBench

Bbench

Abundence of Discounted opportunities

Related Work

● CARROLL , A., AND HEISER, G. An analysis of power consumption in a
smartphone. In Proc. of the USENIX 2010.
○ The same paper as Prasanth and Aaskash discussed.

● CARROLL , A., AND HEISER , G. Mobile multicores: use them or waste
them. In Proc. of the Workshop on Power-Aware Computing and System
(HotPower) (Nov. 2013).
○ That a core should be kept online as long as there is work

Related Work

● SONG , W., SUNG , N., CHUN , B.-G., AND KIM , J. Reducing energy
consumption of smartphones using user-perceived response time
analysis. Santa Bar-bara, CA, Feb. 2014
○ Decreases the frequency when user facing(display on) tasks are completed.

● M ARTINS , M., C APPOS , J., AND F ONSECA, R.Selectively taming
background android apps to improve battery lifetime. In USENIX ATC 15
○ monitor and intercept smartphone background activities while the system is in suspension

state to extend the battery life.

